
SASM64K
User’s Manual

Program Development Support Software

First Edition
 February 1994

NOTICE

1. The information contained herein can change without notice owing to product and/or
technical improvements. Before using the product, please make sure that the
information being referred to is up-to-date.

2. The outline of action and examples for application circuits described herein have
been chosen as an explanation for the standard action and performance of the
product. When planning to use the product, please ensure that the external
conditions are reflected in the actual circuit and assembly designs.

3. When developing and evaluating your product, please use our product below the
specified maximum ratings and within the specified operating ranges including, but
not limited to, operating voltage, power dissipation, and operating temperature.

4. OKI assumes no responsibility or liability whatsoever for any failure or
unusual or unexpected operation resulting from misuse, neglect, improper
installation, repair, alteration or accident, improper handling, or unusual
physical or electrical stress including, but not limited to, exposure to
parameters beyond the specified maximum ratings or operation outside the
specified operating range.

5. Neither indemnity against nor license of a third party's industrial and intellectual
property right, etc. is granted by us in connection with the use of product and/or the
information and drawings contained herein. No responsibility is assumed by us for
any infringement of a third party's right which may result from the use thereof.

6. The products listed in this document are intended only for use in development and
evaluation of control programs for equipment and systems. These products are not
authorized for other use (as an embedded device and a peripheral device).

7. Certain products in this document may need government approval before they can
be exported to particular countries. The purchaser assumes the responsibility of
determining the legality of export of these products and will take appropriate and
necessary steps at their own expense for these.

8. No part of the contents contained herein may be reprinted or reproduced without our
prior permission.

9. MS-DOS is a registered trademark of Microsoft Corporation.

Copyright 1999 Oki Electric Industry Co., Ltd.

1

PREFACE
This manual describes SASM64K, a structured assembler for the OLMS-64K series of 4-bit single-
chip microcontrollers. The contents of this manual are written for developers with some experience
using assembly language.

SASM64K operates on MS-DOS. It is supplied on floppy disk.

Typographic conventions

Symbol Meaning

[] Indicates that items enclosed in the brackets can be omitted.
n1 Indicates an constant expression that has a value of 0 or 1.
n2 Indicates an constant expression that has a value from 0 to 3.
n4 Indicates an constant expression that has a value from 0 to 15.
n8 Indicates an constant expression that has a value from 0 to 255.

3

TABLE OF CONTENTS

Chapter 1. Introduction
1.1 Functional Overview.. 1-1
1.2 Sample Program... 1-3
1.3 DCL Files .. 1-5

1.3.1 File Name .. 1-5
1.3.2 DCL File Search .. 1-5
1.3.3 DCL Instructions And File Declaration Contents ... 1-6
1.3.4 Error Processing .. 1-7

Chapter 2. Starting SASM64K
2.1 Starting Methods.. 2-1

2.1.1 Starting Method 1 .. 2-1
2.1.2 Starting Method 2 .. 2-1

2.2 File Specifications... 2-2
2.3 Options .. 2-4
2.4 Termination Codes... 2-5
2.5 Example Of Starting SASM64K... 2-6

Chapter 3. Assembly Language Syntax
3.1 Characters Allowed In Programs... 3-1
3.2 Structual Elements Of Source Programs... 3-2

3.2.1 Instruction Statements ... 3-2
3.2.2 Directive Statements.. 3-2
3.2.3 Control Statements .. 3-2

3.3 Statement Format Of Basic Instructions ... 3-3
3.3.1 Label Field... 3-3
3.3.2 Instruction Field And Operand Field... 3-3
3.3.3 Comment Field .. 3-3

3.4 Symbols ... 3-4
3.4.1 Reserved Word Symbols ... 3-4
3.4.2 User Defined Symbols... 3-5
3.4.3 Location Symbol ... 3-6
3.4.4 Symbol Scope And Overlapping Definitions .. 3-6

3.5 Constants .. 3-7
3.5.1 Integer Constants ... 3-7
3.5.2 Character Constants... 3-7
3.5.3 String Constants... 3-8

3.6 Operators .. 3-9
3.6.1 Arithmetic Operators ... 3-9
3.6.2 Logical Operators .. 3-10
3.6.3 Bitwise Logical Operators ... 3-10
3.6.4 Relational Operators .. 3-11

4

3.6.5 Other Operators ... 3-11
3.6.6 Precedence... 3-12

3.7 Comments ... 3-13
3.8 Address Space And Segment Types ... 3-14
3.9 Data RAM Address Specifications ... 3-15

3.9.1 HL Indirect Addressing Mode... 3-15
3.9.2 XY Indirect Addressing Mode .. 3-16
3.9.3 Direct Addressing Mode.. 3-17
3.9.4 Stack Pointer Indirect Addressing Mode... 3-18

Chapter 4. Directives
4.1 Symbol Definitions ... 4-1

4.1.1 EQU... 4-1
4.1.2 SET.. 4-1
4.1.3 DATA.. 4-2
4.1.4 CODE .. 4-2
4.1.5 Code Example ... 4-2

4.2 Memory Segment Control ... 4-3
4.2.1 CSEG... 4-3
4.2.2 DSEG... 4-3
4.2.3 Code Example ... 4-4

4.3 Location Counter Control ... 4-5
4.3.1 ORG... 4-5
4.3.2 DS.. 4-5
4.3.3 NSE.. 4-6
4.3.4 Code Example ... 4-6

4.4 Data Definitions.. 4-7
4.4.1 DB.. 4-7
4.4.2 DW .. 4-7
4.4.3 Code Example ... 4-8

4.5 Listing Control ... 4-9
4.5.1 DATE .. 4-9
4.5.2 TITLE.. 4-9
4.5.3 PAGE... 4-10
4.5.4 OBJ/NOOBJ .. 4-10
4.5.5 PRN/NOPRN... 4-10
4.5.6 ERR/NOERR... 4-11
4.5.7 SYM/NOSYM... 4-11
4.5.8 REF/NOREF.. 4-11
4.5.9 LIST/NOLIST ... 4-12
4.5.10 Code Example ... 4-12

4.6 Optimization ... 4-13
4.6.1 B .. 4-13
4.6.2 GOTO.. 4-13
4.6.3 BCAL .. 4-14
4.6.4 Code Example ... 4-14

4.7 Assembler Control ... 4-15
4.7.1 TYPE ... 4-15
4.7.2 END... 4-15

5

4.8 Preprocessor Directives ... 4-16
4.8.1 INCLUDE.. 4-16
4.8.2 DEFINE... 4-16
4.8.3 SUB ... 4-17
4.8.4 REFER... 4-18
4.8.5 Macro Definitions.. 4-18
4.8.6 Macro Calls ... 4-19

Chapter 5. SASM Instructions
5.1 SASM Instruction Syntax.. 5-1

5.1.1 Skips .. 5-1
5.1.2 Data Objects .. 5-2
5.1.3 Operators ... 5-4
5.1.4 Options .. 5-6
5.1.5 Data Object Restrictions.. 5-7
5.1.6 SASM Instruction Expansion .. 5-9

Chapter 6. SASM Instruction Details
6.1 Nibble Assignments.. 6-1
6.2 Nibble Exchanges ... 6-3
6.3 Nibble Equivalence Comparisons... 6-5
6.4 Nibble Greater/Less-Than Comparisons ... 6-7
6.5 Nibble Additions & Subtractions ... 6-9
6.6 Nibble Logical Operations .. 6-11
6.7 Nibble Shifts ... 6-13
6.8 Nibble Increments & Decrements .. 6-15
6.9 Byte Assignments ... 6-17
6.10 Byte Exchanges... 6-19
6.11 Byte Equivalence Comparisons .. 6-21
6.12 Byte Greater/Less-Than Comparisons .. 6-23
6.13 Byte Additions & Subtractions ... 6-25
6.14 Byte Logical Operations .. 6-27
6.15 Byte Shifts ... 6-29
6.16 Byte Increments & Decrements .. 6-31
6.17 Bit Assignments .. 6-33
6.18 Bit Exchanges ... 6-35
6.19 Bit Equivalence Comparisons ... 6-37

Chapter 7. Control Statements
7.1 Bit Expressions ... 7-1

7.1.1 Structual Elements Of Bit Expressions ... 7-1
7.1.2 SKIP And NOSKIP Operators .. 7-1
7.1.3 Operators Permitted In Bit Expressions .. 7-2

7.2 IF-ELSE-ELSEIF Statements... 7-3
7.3 WHILE Statements.. 7-5

6

7.4 REPEAT-UNTIL Statements ... 7-6
7.5 SWITCH-CASE Statements ... 7-7
7.6 FOR Statements ... 7-9
7.7 BREAK Statements ... 7-10
7.8 CONTINUE Statements .. 7-11
7.9 Optimization Of Bit Expressions .. 7-12

Chapter 8. Error Messages
8.1 Syntax Errors ... 8-1
8.2 Warnings... 8-3
8.3 Fatal Errors .. 8-4

Chapter 9. Output Files
9.1 Object File... 9-1

9.1.1 Object Code Information... 9-1
9.1.2 Debug Information .. 9-3

9.2 Print File ... 9-5
9.3 Cross-Reference List.. 9-7
9.4 Symbol List ... 9-8
9.5 Error File .. 9-9
9.6 Assembly Source File ... 9-10

Chapter 10. Sample Program
10.1 Sample Program Specifications .. 10-1

10.1.1 Function of Sample Program... 10-1
10.1.2 Program Specifications.. 10-1

10.2 File Configuration .. 10-3

Appendices
Basic Instructions ... App.-1
Directives... App.-1
Operators .. App.-2
Special Assembler Symbols ... App.-2
Control Statements... App.-2
Data Assembler Symbols ... App.-2

Chapter 1

Introduction
This chapter describes the assembler’s functions.

Chapter 1, Introduction

1-1

1.1 Functional Overview
SASM64K is a structured assembler for the OLMS-64K series of 4-bit single-chip microcon-
trollers. A structured assembler provides a new language that combines the ease of coding of high-
level languages with the high coding efficiency of assemblers. It raises the overall level of applica-
tion program development efficiency.

SASM64K has the following features.

● Upward compatibility with the ASM64K assembler

SASM64K is upward-compatible with the ASM64K assembler. Source programs previously
created for ASM64K can also be assembled by SASM64K. In addition, programmers can intro-
duce the new features of SASM64K a few at a time into their previous programming style,
enabling an easy transition to SASM64K programming.

● Extended instructions (SASM instructions) added

Extended instructions are macro instructions that further enhance object orientation of data.
Each extended instruction is a combination of multiple CPU instructions (hereafter called basic
instructions). For example, an extended instruction can express a memory-to-memory transfer
with a single statement. Coding is also similar to high-level languages, making programs easier
to read and understand.

● Flow control blocks implemented

Programs can use control blocks for selection and iteration, such as the IF and WHILE statement
blocks used in high-level languages. This allows development of structured programs, which are
easy to maintain and update.

● Preprocessor directives added

SASM64K adds preprocessor directives for macros and include files. Programmers can define
proprietary macro instructions, and can include the files that define them.

SASM64K references the contents defined in a DCL file to perform assembler processing for each
particular device.

A DCL file contains device-specific information. One is provided for each target device. the
SASM64K assembler can be used for all devices in the OLMS-64K series by changing the DCL
file.

Please refer to the following file provided with the assembler for the OLMS-64K series devices
supported by SASM64K.

● README.JPN (Japanese version)
● README.ENG (English version)

Chapter 1, Introduction

1-2

The descriptions in this manual assume the following characteristics of the target device.

Program ROM size 0H to 7FFFH
Data RAM size 0H to 7FFH

The actual values will differ depending on the particular OLMS-64K series device. (This informa-
tion is given in the DCL file provided with each device.)

SASM64K outputs four files: an object file, a print file, an error file, and an assembly source file.

The object file contains the machine language in Intel HEX format.

The print file lists the mnemonics alongside the machine language that they generate.

The error file consists of error messages and the source file statements that generated the errors. It
will be output to the standard console if not specified otherwise.

The assembly source file contains the source code with preprocessor directives and extended
instructions expanded. It can be assembled with ASM64K Ver. 1.01 or higher, as well as
SASM64K itself.

Figure 1-1. Input/Output Flow

SASM64K

Object file
(.HEX)

Print file
(.PRN)

Error file
(.ERR)

Assembly source file
(.SRC)

Source file
(.ASM)

DCL file
(.DCL)

Chapter 1, Introduction

1-3

1.2 Sample Program
Here is a small sample SASM64K program to start with.

1: TYPE(M64152)

2: TITLE "Sample program for sasm64k"

3:

4: INCLUDE(SYMBOL.DEF) ; File include

5:

6: DEFINE RESET_DATA 0H ; Macro definition by DEFINE

7:

8: MACRO INC_BCD_2N() ; Macro definition

9: BA = 7

10: [] == 9H

11: A=1

12: BA += BYTE[]

13: BYTE[] = BA

14: ENDM

15:

16: ORG 100H

17: START:

18: HL = RESET_DATA

19: WHILE(NOSKIP X == 0) ; WHILE statement

20: INC_BCD_2N() ; Macro call

21: IF(SKIP BYTE[] == 19H) ; IF statement

22: [OPMODE_DATA]=4

23: BREAK ; BREAK statement

24: ENDI

25: ENDW

26: BCAL PLAY_SOUND_5

27:

28: END

Chapter 1, Introduction

1-4

This program uses many SASM instructions instead of the CPU’s basic instructions. The
“HL=RESET_DATA” on line 18 is one of these. This instruction assigns the value RESET_DATA
to the register pair HL. It corresponds to the basic instruction LHLI RESET_DATA. The SASM
instructions are close to high-level language code, so programs can be more easily written and more
easily read. Some of the SASM instructions expand into multiple basic instructions.

The definition of the symbol RESET_DATA with the DEFINE directive on line 6 will cause
RESET_DATA to be replaced with the string “0H” each place it occurs in the source program.
Another preprocessor directive is the INCLUDE directive on line 4. In this example, line 4 will
expand to the contents of the file SYMBOL.DEF.

The macro definition on lines 8 to 14 and the macro call on line 20 are also preprocessor directives.
In this example, the symbol INC_BCD_2N is defined as a macro. At the point it is called in line
20, it will be expanded to the contents of lines 9 to 13. Local labels can be declared that generate
new label names each time macro arguments are expanded.

The WHILE statement block on lines 19 to 25 will cause the inner statements to be repeatedly exe-
cuted until some condition is fulfilled. In this example, the condition is that register X not be equal
to 0. Statements that control program flow like the WHILE statement are called control statements.
An additional control statement is shown in the IF statement block on lines 21 to 24 in the sample
program.

Chapter 1, Introduction

1-5

1.3 DCL Files
DCL files contain information in text format. SASM64K performs device-specific processing
based on a DCL file. In other words SASM64K becomes an OLMS-64K device-specific assembler
by replacing the DCL file for each particular device. The DCL file must be specified with a TYPE
directive.

1.3.1 File Name

The assembler determine the DCL file name based on the device name specified in the TYPE direc-
tive.

DCL file name = devicename.DCL

You may change the base name of a DCL file to another name, but the “.DCL” extension cannot be
changed.

1.3.2 DCL File Search

The assembler searches for the DCL file in the following sequence. Therefore the DCL file must
be placed somewhere specified by one of these paths.

1. Search the path of the DCL file specification of the TYPE directive (normally the current
directory).

2. Search the paths defined by the PATH environment variable. However, if the DCL file
specification includes a path specification, then the search from the PATH environment
variable will not be performed.

Examples are shown below. The target device for these examples is the MSM64152. Assume that
the PATH environment variable has been defined as follows.

PATH = A:\BIN; A:\; DCL;

■ Example 1 ■

TYPE(M64152) is specified.

1. The assembler searches for M64152.DCL in the current directory.
2. If not found in (1), then the assembler will search for the following files in sequence, in

accordance with the PATH environment variable.

A:\BIN\M64152.DCL
A:\M64152.DCL
DCL\M64152.DCL

Chapter 1, Introduction

1-6

■ Example 2 ■

TYPE(DCL\M64152) is specified.

1. The assembler searches for M64152.DCL in the DCL subdirectory of the current directo-
ry.

2. If not found in (1), then the search will terminate because the DCL file specification
includes a path specification (DCL\).

1.3.3 DCL Instructions And File Declaration Contents

The DCL file declares memory address ranges, address symbols, and permitted instructions by
using DCL instructions. The various DCL instructions are shown in Table 1-1.

Table 1-1. DCL Instructions

DCL Instruction Declaration

#ROM Declares program ROM area of target device.

#RAM Declares data RAM area of target device.

#INSTRUCTION Declares permitted instruction mnemonics of target device.

#SFR Declares SFR area of target device.

#DEFSFR Declares data address symbols of target device.

#ACCESS Declares SFR area access attributes of target device.

Data address symbols are assigned to registers in the SFR area to indicate the addresses of the cor-
responding registers. Refer to the following file for data address symbol information for each target
device.

● README.JPN (Japanese version)
● README.ENG (English version)

■ Note ■

Never attempt to rewrite the contents of a DCL file. Assembler results are not guaranteed if assem-
bly is performed using a DCL file whose contents have been rewritten.

You should also use the most recent DCL file. When using SASM64K, always use the DCL files
included in the SASM64K package.

Chapter 1, Introduction

1-7

1.3.4 Error Processing

The DCL file is processed in the assembler’s first phase. If errors occur during this processing,
then error messages will be displayed on the screen. However, if just one error occurs, then the
assembler will abort without performing further processing.

If no errors occur, then assembly will continue.

Chapter 1, Introduction

1-8

Chapter 2

Starting SASM64K
This chapter explains how to start SASM64K.

Chapter 2, Starting SASM64K

2-1

2.1 Starting Methods
SASM64K can be started with either of two methods.

Method 1: SASM64K file_name [options]
Method 2: SASM64K

The file_name is the name of the file containing the source program to be assembled. The options
specify listing control of the output file, etc. The start command, file name, and options are delim-
ited by one or more spaces or tabs.

2.1.1 Starting Method 1

Type the following at the operating system prompt.

SASM64K file_name [options]

The assembler will load and then immediately start assembly.

2.1.2 Starting Method 2

Type the following at the operating system prompt.

SASM64K

The assembler will load and display a command prompt (*) on the console. Type the file name and
options at the prompt as below.

file_name [options]

After this input the assembler will start assembly.

If nothing is input, then the assembler’s usage will be output on the screen, and assembly will not
be performed.

Chapter 2, Starting SASM64K

2-2

2.2 File Specifications
The file specification method described in this section applies to file specifications on the starting
command line, in include directives, and in listing directives.

SASM64K allows files to be specified with the hierarchical directory structure that the operating
system supports. In general the format of file specifications is as follows.

The length of a single file specification can be up to 50 characters. All characters that exceed this
limit will be ignored.

The entire file name specification does not need to be specified; parts can be omitted. SASM64K
determines defaults for drive names, directories, file names, and extensions for the different file
types as shown in Table 2-1. When an item is omitted, the corresponding default shown in the table
will be used.

Table 2-1. File Types And Defaults

File Type Item

Drive Directory File Name Extension

Source file Current drive Current directory None .ASM

Object file Current drive Current directory Same as source file .HEX

Print file Current drive Current directory Same as source file .PRN

Error file Current drive Current directory Same as source file .ERR

Assembly source file Current drive Current directory Same as source file .SRC

[d:] [\] [directory_name\] ... [directory_name\] file_name [.extension]

Chapter 2, Starting SASM64K

2-3

For example, if a file name with extension is specified for the source file when the assembler is
started (Figure 2-1(1)), then SASM64K will recognize that as the file name. If no extension is
added (Figure 2-1(2)), then SASM64K will assume an extension of “.ASM.” If a period (.) is the
last character of the file name (Figure 2-1(3)), then SASM64K will assume a file name with no
extension.

The file specification for the listing directive is permitted up to the path name. In order to distin-
guish this from a file name, append a backslash (\) to the end of the specification string.

Figure 2-1. File Specifications And Interpretations

Specification Interpretation

(1) TEXT.SRC TEXT.SRC

(2) TEXT TEXT.ASM

(3) TEXT. TEXT

Chapter 2, Starting SASM64K

2-4

2.3 Options
Various specifications for controlling assembly functions can be specified when SASM64K is start-
ed. The options that can be specified are shown in Table 2-2. These options allow some of the list-
ing directives described in section 4.5, “Listing Control,” to be input from the starting command
line. The format differs, but the functions are identical to all the directives.

Options take precedence over directives. If SASM64K encounters a directive in a source program
that tries to invalidate an option, then it will not output an error message for that directive.

Always specify options after the source file name. Some of the options specify an output file name.
For the method of specifying a file name, refer to section 2.2, “File Specifications,” as well as the
explanation for the corresponding directive.

As many options as needed can be specified in any order. When two or more options are specified,
they must be delimited by one or more spaces or tabs.

Table 2-2. Options

Options Function or corresponding directive

/O[(file)] OBJ

/NO NOOBJ

/PR[(file)] PRN

/NPR NOPRN

/S SYM

/NS NOSYM

/R REF

/NR NOREF

/E[(file)] ERR

/NE NOERR

/D Output symbol debug information to the HEX file.

/ND Do not output symbol debug information to the HEX file.

/A[(file)] Output an assembly source file.

/NA Do not output an assembly source file.

Chapter 2, Starting SASM64K

2-5

2.4 Termination Codes
When SASM64K terminates operation, it returns a value corresponding with the termination state
(termination code) to the operating system.

Table 2-3. Termination Codes

Termination code Termination state

0 No error.

1 An assembly error occurred.

Chapter 2, Starting SASM64K

2-6

2.5 Example Of Starting SASM64K
This section takes the assembly of a source file TEXT.ASM as an example. It shows the two meth-
ods previously described for starting the assembler.

This example will assemble the source file TEXT.ASM in the \USR\MYDIR directory, and will
generate a print file and an error file. It will not generate a cross-reference list.

■ Example 1 (Starting Method 1)

■ Example 2 (Starting Method 2)

A>SASM64K \USR\MYDIR\TEXT /PR /E /NR

SASM64K Structured Macro Assembler, Ver.1.00 Feb 1994

Copyright (C) 1994. Oki Electric Ind. Co.,Ltd.

pass1...

pass2...

Errors :15

Warnings :2

...Assembly End

A>SASM64K

SASM64K Structured Macro Assembler, Ver.1.00 Feb 1994

Copyright (C) 1994. Oki Electric Ind. Co.,Ltd.

*\USR\MYDIR\TEXT /PR /E /NR

pass1...

pass2...

Errors :15

Warnings :2

...Assembly End

Chapter 3

Assembly Language
Syntax
This chapter describes the rules of assembly language and the format of source programs.

Chapter 3, Assembly Language Syntax

3-1

3.1 Characters Allowed In Programs
The following characters can be used when coding a source program for SASM64K.

Letters: A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m

n o p q r s t u v w x y z

Digits: 0 1 2 3 4 5 6 7 8 9

Symbols: ! ” # $ % & Ô () * + , -

. / : ; < = > ? @ [] ^ \

tab space _ (underscore) ˜

SASM64K allows lower case letters to be coded, but internal it converts them all to upper case
before processing. Therefore, “TELEX” and “telex” will be handled as the same symbol.

Chapter 3, Assembly Language Syntax

3-2

3.2 Structual Elements Of Source Programs
An SASM64K source program is a collection of statements. There are several types of statements,
but they all end with a carriage return. Please note that an end of file (EOF) cannot replace the car-
riage return. There are also statements that consist only of spaces, tabs, or carriage returns.

The maximum number of characters in a statement is 255, including the carriage return. Be sure
not to exceed this limit.

Within a program, spaces and tabs are used to delimit between symbols, operators, etc. There are
no special cautions here.

The statement types are described next.

3.2.1 Instruction Statements

SASM64K has two types of instructions. Instructions found in the CPU itself are called basic
instructions. Instructions that SASM64K expands to one or more instructions when interpreting
them during assembly are called SASM instructions. The beginning of all instructions can include
a label definition. Instructions can also be converted to bit expressions by added a SKIP operator at
the beginning. For details refer to section 3.3, “Statement Format Of Basic Instructions,” and chap-
ter 5, “SASM Instructions.”

3.2.2 Directive Statements

Directive statements give the assembler itself various specifications. They include both preproces-
sor directives and assembler directives. For details refer to chapter 4, “Directives.”

3.2.3 Control Statements

Control statements (control blocks) control program flow. A control block is configured from two
or more control statements. For details refer to chapter 7, “Control Statements.”

Chapter 3, Assembly Language Syntax

3-3

3.3 Statement Format Of Basic Instructions
Basic instruction statements are configured from four fields (label definition, instruction, operand,
and comment). They are generally coded as follows.

LABEL: LMA @XY ;comment
label definition instruction operand comment

Actual statements do not necessarily need to fill all four fields. Only required fields will be filled.
Each field can start from any column, but the fields cannot be entered out of order.

Each field is defined below.

3.3.1 Label Field

The label field codes a symbol that will be defined as the current address. A colon (:) must always
be placed after the symbol.

This symbol can be referenced anywhere else in the program.

3.3.2 Instruction Field And Operand Field

The instruction field and operand field code the basic instruction. When an operand follows the
instruction, they are delimited by spaces or tabs. Two more instructions cannot be coded in one
statement.

3.3.3 Comment Field

The comment field starts with a semicolon (;) and ends with the carriage return. The contents of a
comment field have no effect on the assembly results.

Chapter 3, Assembly Language Syntax

3-4

3.4 Symbols
Symbols represent numbers, addresses, and registers. They are broadly divided into reserved word
symbols and user defined symbols. Reserved word symbols are defined by the assembler, and user
defined symbols are defined within the program by the user. Programs can be developed more
effectively by using symbols properly.

3.4.1 Reserved Word Symbols

SASM64K has pre-defined the basic instructions, special assembler symbols, and data address sym-
bols given in the appendix as reserved words. The user cannot define these reserved words within a
program.

Reserved words can be used only as specifically designated. In other words, the assembler does not
permit reserved words to be labels in programs or to be redefined with symbol directives.

The types of reserved words are described below.

(1) Basic instructions

Mnemonics that represent basic instructions are all reserved words.

(2) Directives

Directives for controlling the assembler are all reserved words.

(3) Special assembler symbols

Special assembler symbols are reserved words provided for OLMS-64K series internal registers,
and are special reserved words used with certain instruction operands and SASM instructions.

(4) Data address symbols

Data address symbols are assigned to registers in the SFR area. Each represents the address of its
corresponding register. For details refer to the following file.

● README.JPN (Japanese version)
● README.ENG (English version)

(5) Symbols that begin with a question mark (?)

SASM64K uses symbols that begin with a question mark internally, so they are reserved words.

Chapter 3, Assembly Language Syntax

3-5

3.4.2 User Defined Symbols

New symbols can be defined in a program as labels or with symbol definition directives. Symbols
defined in a program by the user in this manner are called user defined symbols.

User defined symbols are given their values when defined.

The following characters can be used in user defined symbols.

A to Z, a to z, 0 to 9, $, ?, _

However, in order to distinguish user defined symbols from integer constants, the first character
must not be a numeric digit.

There is no restriction on the number of characters coded for a symbol, but only the first 31 charac-
ters are valid. All characters past this will be ignored.

Correct examples Incorrect examples

_LOOP: DATA: ...same as reserved word

LOOP_1: 1ABC: ...starts with a numeric digit

$XYZ:

When a user defined symbol is defined in a program (except when defined with a preprocessor
directive), it will be given a value and segment type.

Segments type will be either CSEG or DSEG, depending on which address space the label or name
was defined in. However, names defined with the EQU and SET directives will not be given a seg-
ment type.

Labels are defined as addresses. They must be followed by a semicolon (:) when defined. A label
will be assigned the segment type and the segment address value that defines the label.

Names are defined with symbol definition directives, to be described later.

The basic instructions, directives, special assembler symbols, and data address symbols listed in the
appendix cannot be used as user defined symbols.

Chapter 3, Assembly Language Syntax

3-6

3.4.3 Location Symbol

The dollar sign ($) can be used as a symbol representing the value of the location counter. When
coded in a normal operand, it represents the address at which the instruction is located.

■ Example ■

3.4.4 Symbol Scope And Overlapping Definitions

In general a symbol must be defined before it is referenced. However, labels can be defined after
being referenced (forward references are possible).

A symbol can be defined only once within a single file, but it can be redefined with the SET direc-
tive. A symbol defined with the DEFINE directive can be redefined as long as it completely match-
es the string to expand.

Parameters and local symbols defined within a macro definition are valid only with that macro.
Even if an identical name is defined within another macro, it will be handled as a different symbol.

Location Code Line No. Instruction Operand Operand Value

1 TYPE (M64162)

0000 40 2 LAL ;

0001 BF 70 3 LAM @XY ;

0003 52 4 XAB ;

0004 A8 06 5 JP $+2 ;06

0006 06 6 DB $;06

7

Chapter 3, Assembly Language Syntax

3-7

3.5 Constants
3.5.1 Integer Constants

SASM64K handles terms that start with a digit 0 to 9 as integer constants.

The allowed range of values is 0 to 65535 (0FFFFH). Values above that limit will cause an error.

Binary, octal, decimal, and hexadecimal numeric expressions are permitted as integer constants. In
order to distinguish between these expression types, a type identifier is appended to the value as
shown in Table 3-1. Also, when a hexadecimal expression would start with an alphabetic character
(A to F), it is prefixed with the digit 0 in order to distinguish it from a symbol.

Also, to enhance program readability, underscores (_) may be coded anyplace within numeric
expression strings. However, if added at the start of the string, then it will be handled as a symbol.

Table 3-1. Integer Constant Expressions

Number Type Permitted Characters Type Identifier Examples

Binary 0, 1, _ B 1010B, 0100_1101B

Octal 0 to 7, _ O, Q 271O, 514Q

Decimal 0 to 9, _ D 1263, 401D

Hexadecimal 0 to 9, A to F, _ H 753H, 0C67EH

3.5.2 Character Constants

A character constant is one ASCII character equivalent enclosed in single quotation marks (‘). The
reason we say “one ASCII character equivalent” is that the codes below are also permitted.

(1) An octal number with up to 3 digits (up to 377Q=0FFH) can be coded after a backslash.

‘\0’ Evaluates to the number 0.
‘\123’ Evaluates to the number 123Q.

(2) Any character other than ‘0’ to ’7’ after a backslash represents the character itself.

‘\A’ Evaluates to the character A.
‘\#’ Evaluates to the character #.

(3) A single quotation mark itself is coded as ‘\’’ using method (2) above.

Chapter 3, Assembly Language Syntax

3-8

3.5.3 String Constants

A string constant is a string of displayable characters enclosed in double quotation marks (“). To
represent non-displayable characters, use an escape sequence.

String constants are only used in DB directives. For details refer to section 4.4, “Data Definition.”

Chapter 3, Assembly Language Syntax

3-9

3.6 Operators
Arithmetic expressions (constant expressions) that use the previously described integer constants,
character constants, user defined symbols, and location symbol can be coded as instruction
operands. SASM64K expresses numbers internally as 32-bit unsigned integers, and all operations
are performed as 32-bit unsigned operations. Overflows that result from operations will be ignored,
so pay special attention when using relational operators.

3.6.1 Arithmetic Operators

Operator Function

+ Addition and unary operator.

- Subtraction and unary operator.

* Multiplication

/ Division

% Modulo calculation. Returns the remainder dividing the left term by the right term.

■ Example ■

Arithmetic expressions and their values are shown below.

Arithmetic Expression Value
1234H+80H 12B4H
1234H–80H 11B4H
1234H*80H 91A00H
1234H/80H 24H
1234H%80H 34H

Chapter 3, Assembly Language Syntax

3-10

3.6.2 Logical Operators

The result of a logical operation is always either 0 (false) or 1 (true).

Operator Function

&& Returns 1 if both the left term and right term are not 0; otherwise returns 0.

|| Returns 0 if both the left term and right term are 0; otherwise returns 1.

! Returns 1 if the right term is 0; otherwise returns 0.

■ Example ■

Logical expressions and their values are shown below.

Logical Expression Value
5588H&&0H 0
5588H || 0H 1
!5588H 0

3.6.3 Bitwise Logical Operators

Bitwise logical operators operate on each bit of their operand terms.

Operator Function

& Logical AND of left term and right term.

| Logical OR of left term and right term.

^ Exclusive OR of left term and right term.

>> Shift left term to the right by the number of bits specified by the right term.

<< Shift left term to the left by the number of bits specified by the right term.

˜ Bit complement of right term.

■ Example ■

Bitwise logical expressions and their values are shown below.

Bitwise Logical Expression Value
1234H&4321H 0220H
1234H | 4321H 5335H
1234H^4321H 5115H
1234H<<1 2468H
1234H>>1 091AH
˜1234H 0EDCBH

Chapter 3, Assembly Language Syntax

3-11

3.6.4 Relational Operators

The result of a relational operation is always either 0 (false) or 1 (true).

Operator Function

> Returns 1 if left term is greater than right term; otherwise returns 0.

>= Returns 1 if left term is greater than or equal to the right term; otherwise returns 0.

< Returns 1 if left term is less than right term; otherwise returns 0.

<= Returns 1 if left term is less than or equal to right term; otherwise returns 0.

== Returns 1 if left term is equal to right term; otherwise returns 0.

!= Returns 1 if left term is not equal to right term; otherwise returns 0.

■ Example ■

Relational expressions and their values are shown below.

Relational Expression Value
1234H>1234H 0
1234H>=1234H 1
1234H<1234H 0
1234H<=1234H 1
1234H==1234H 1
1234H!=1234H 0

3.6.5 Other Operators

Operator Function

LOW Returns value of low 4 bits of an 8-bit constant.

HIGH Returns value of high 4 bits of an 8-bit constant.

OFFSET Returns value of low 8 bits of a 16-bit constant.

BNK Returns value of high 8 bits of a 16-bit constant.

■ Example ■

Expressions and their values are shown below.

Expression Value
LOW 12H 2H
HIGH 12H 1H
OFFSET 1234H 34H
BNK 1234H 12H

Chapter 3, Assembly Language Syntax

3-12

3.6.6 Precedence

Table 3-2 shows operator precedence. The highest precedence is 1, with progressively lower prece-
dences following in order. Operators on the same line have the same precedence. Operators are
evaluated from highest to lowest precedence. Operators with the same precedence are evaluated in
their order of appearance from the left of the expression.

Table 3-2. Operator Precedence

Precedence Operator

1 ()

2 .

3 ! ˜ – (unary) LOW HIGH OFFSET BNK

4 * / %

5 + –

6 << >>

7 < <= > >=

8 == !=

9 &

10 ^

11 |

12 &&

13 ||

Chapter 3, Assembly Language Syntax

3-13

3.7 Comments
Comments have no effect on programs, so the programmer can freely code them throughout. The
format is to start with a semicolon (;), and follow with the comment itself.

■ Example ■

As shown above, statements can be coded with comments after instructions and operands, and they
can be coded to consist only of comments. Any displayable character can be coded in a comment,
not just the letters, digits, and symbols given in section 3.1, “Characters Allowed In Programs.”

LAB ;ACC<-B
JP LOOP ;GOTO LOOP

;--------------------------------
; SUB-PROGRAM
;--------------------------------

ORG 100H

Chapter 3, Assembly Language Syntax

3-14

3.8 Address Space And Segment Types
The OLMS-64K series has two address spaces (code address space and internal data address space)
that it can process independently.

SASM64K gives each symbol defined as an address in these address spaces a segment type as an
attribute. SASM64K does not perform segment type checks (checking whether or not operands are
of the expected type). However, by clearly declaring which address space each symbol resides in,
you can make programs easier to read and can avoid mixing symbols between different segments.

Table 3-3 shows the relationship of address spaces and segment types.

Table 3-3

Address Space Contents Segment Type

Code space 0 to 7FFFH x 8 bits CSEG

Internal data space 0 to 7FFH x 4 bits DSEG

The actual size of each address space differs for the various devices in the OLMS-64K series. This
information is given in the DCL file provided for each device.

Chapter 3, Assembly Language Syntax

3-15

3.9 Data RAM Address Specifications
There are four modes to specify in operands how data is to be accessed (addressing).

(1) HL indirect addressing mode
(2) XY indirect addressing mode
(3) Direct addressing mode
(4) Stack pointer indirect addressing mode

Each addressing mode is valid with a subset of the instructions.

The bank is specified with the low 3 bits of either Bank Select Register 0 (BSR0) or Bank Select
Register 1 (BSR1).

3.9.1 HL Indirect Addressing Mode

If nothing is coded in the operand, the entire area of RAM can be addressed by the combination of
the HL register and the bank specified by the low 3 bits of BSR0.

Figure 3-1. Data Memory Address For HL Indirect Addressing

■ Code Example ■

LBS0I 7H ; Sets BSR0 to 7.

LHLI 3FH ; Loads 3FH in the HL register.

INM ; Increments the data at RAM address 73FH.

H3 H2 H1 H0 L3 L2 L1 L0

H3 H2 H1 H0 L3 L2 L1 L0

10 9 8 7 6 5 4 3 2 1 0

H register L register

Data memory address

Bank specification

Chapter 3, Assembly Language Syntax

3-16

3.9.2 XY Indirect Addressing Mode

If “@XY” is coded in the operand, the entire area of RAM can be addressed by the combination of
the XY register and a bank select register. When BEF (bit 3 of BSR1) is 0, the bank will be speci-
fied by the low 3 bits of BSR0. When BEF is 1, the bank will be specified by the low 3 bits of
BSR1.

Figure 3-2. Data Memory Address For XY Indirect Addressing

■ Code Example ■

LBS1I 7H ; Sets BSR1 to 7.

SBE ; Sets the bank enable flag (BEF).

RBC ; Resets the bank common flag (BCF).

LXYI 3FH ; Loads 3FH in the XY register.

INM @XY ; Increments the data at RAM address 73FH.

X3 X2 X1 X0 Y3 Y2 Y1 Y0

X3 X2 X1 X0 Y3 Y2 Y1 Y0

10 9 8 7 6 5 4 3 2 1 0

X register Y register

Data memory address

Bank specification

Chapter 3, Assembly Language Syntax

3-17

3.9.3 Direct Addressing Mode

If an 8-bit (1-byte) address value is coded in the operand, the entire area of RAM can be addressed
by the combination of the address value and a bank select register. When BEF (bit 3 of BSR1) is 0,
the bank will be specified by the low 3 bits of BSR0. When BEF is 1, the bank will be specified by
the low 3 bits of BSR1. However, when BCF is 1 and the address within the bank is 0~7FH,
addressing will be in bank 0.

Figure 3-3. Data Memory Address For Direct Addressing

■ Code Example ■

LBS0I 7H ; Sets BSR0 to 7.

RBE ; Resets the bank enable flag (BEF).

RBC ; Resets the bank common flag (BCF).

INMD3FH ; Increments the data at RAM address 3FH.

m7 m6 m5 m4 m3 m2 m1 m0

m7 m6 m5 m4 m3 m2 m1 m0

10 9 8 7 6 5 4 3 2 1 0

Immediate data

Data memory address

Bank specification

Chapter 3, Assembly Language Syntax

3-18

3.9.4 Stack Pointer Indirect Addressing Mode

In this mode (execution of PUSH and POP instructions) the address will be that in bank 7 given by
the stack pointer, regardless of the bank select registers (BSR0, BSR1).

Figure 3-4. Data Memory Address For Stack Pointer Indirect Addressing

■ Code Example ■

PUSH HL ; Pushes the contents of the HL register into the RAM address

; in bank 7 specified by the stack pointer.

1 1 1 S6 S5 S4 S3 S2 S1 S0

S6 S5 S4 S3 S2 S1 S0

10 9 8 7 6 5 4 3 2 1 0

Stack pointer

Data memory address

Bank 7

Chapter 4

Directives
This chapter explains directives. Directives are provides for controlling assembler states, so except
for the DB, DW, B, and BCAL directives, they do not generate code.

Chapter 4, Directives

4-1

4.1 Symbol Definitions
Symbol definition directives enable the user to define symbols that represent numeric or address
values. Defined symbols can be referenced anywhere in a program.

4.1.1 EQU

■ Syntax ■

symbol EQU constant_expression
symbol = constant_expression

■ Function ■

The EQU directive assigns the value of a constant expression to a symbol.

A symbol defined with EQU is not permitted to be redefined within the same program as a label or
new symbol. It will also not be given a segment type.

The constant expression cannot include forward references. Its result must evaluate within the
range 0 to 0FFFFH.

4.1.2 SET

■ Syntax ■

symbol SET constant_expression

■ Function ■

The SET directive has the same function as the EQU directive. However, when the SET directive
is used, the same symbol can be redefined any number of times with additional SET directives.
The symbol will be assigned the value of the expression of the current SET directive. Accordingly,
an EQU directive assigns a single value to a symbol, but the value assigned by a SET directive will
be valid until changed by the next SET directive.

Chapter 4, Directives

4-2

4.1.3 DATA

■ Syntax ■

symbol DATA constant_expression

■ Function ■

The DATA directive assigns a RAM data address to a symbol.

The expression cannot include forward references. Its result must evaluate within the range 0 to
7FFH (the 7FFH maximum value will differ depending on the device). The symbol will be
assigned the DSEG segment type.

Symbols defined with the DATA directive cannot be redefined.

4.1.4 CODE

■ Syntax ■

symbol CODE constant_expression

■ Function ■

The CODE directive assigns a code address to a symbol.

The expression cannot include forward references. Its result must evaluate within the range 0 to
7FFFH (the 7FFFH maximum value will differ depending on the device). The symbol will be
assigned the CSEG segment type.

Symbols defined with the CODE directive cannot be redefined.

4.1.5 Code Example

ABC EQU 8H

VAL1 EQU ABC+1

VAL2 EQU ABC+2

FLAG SET 1

DADR DATA 30H ; Assigns data address 30H to DADR.

CADR CODE 250H ; Assigns code address 250H to CADR.

LAI ABC

LAI FLAG ; Value of FLAG is 1.

FLAG SET 2

LAI FLAG ; Value of FLAG is 2.

Chapter 4, Directives

4-3

4.2 Memory Segment Control
Memory segment control directives define the start of segments (address spaces). There are two
segments: the code segment and data segment. Each segment has its own location counter. The
location counter values correspond one-for-one with addresses in their respective segments.

The default segment when the assembler starts is CSEG.

4.2.1 CSEG

■ Syntax ■

CSEG

■ Function ■

The CSEG directive defines the start of the code address segment. The assembler starts out in the
code segment. When CSEG is first defined, the location counter value will become 0. The range
of values of the code segment’s location counter is 0 to 7FFFH (the 7FFFH value will differ
depending on the device). The location counter will be modified by the ORG, DS, DB, DW, and
NSE directives, as well as instructions in machine language.

If CSEG is defined in a second or later place, then its location counter value will begin from the last
location counter value in the previous CSEG.

4.2.2 DSEG

■ Syntax ■

DSEG

■ Function ■

The DSEG directive defines the start of the data address segment. In this segment, symbols for
RAM addresses are defined and areas are reserved. The DSEG directive can be used any number
of times in a program. The range of values of the data segment’s location counter is 0 to 7FFH (the
7FFH value will differ depending on the device) corresponding to the RAM address. The location
counter will be modified by the ORG and DS directives. When DSEG is first defined, the location
counter value will become 0.

If DSEG is defined in a second or later place, then its location counter value will begin from the last
location counter value in the previous DSEG.

Chapter 4, Directives

4-4

4.2.3 Code Example

DSEG ; Start data segment.

ORG 10H

DT1: DS 10

DT2: DS 5

CSEG ; Start code segment.

ORG 100H

DCM

DW 123

Chapter 4, Directives

4-5

4.3 Location Counter Control
The location counter control directives modify the values of the location counters of each address
space. The location counter control directives are ORG, DS, and NSE.

4.3.1 ORG

■ Syntax ■

ORG constant_expression

■ Function ■

The ORG directive sets the location to begin storing the program or data. It can be used in either
segment. When the assembler encounters an ORG directive, it evaluates the constant expression
and stores the result in the location counter.

The location counters are managed by the assembler itself. They correspond to addresses in the dif-
ferent address segments. The ORG directive may be used any number of times in one program.

The constant expression cannot include forward references or labels. Its result must evaluate within
the permitted range for the appropriate address segment.

4.3.2 DS

■ Syntax ■

[label :] DS constant_expression

■ Function ■

The DS directive reserves a memory area with undefined contents. Its size will be the number of
bytes (for CSEG) or nibbles (for DSEG) indicated by the constant expression.

The DS directive simply adds the value of the constant expression to the location counter value of
the current segment type. However, the addresses restrictions for the segment cannot be exceeded.

The constant expression cannot include forward references or labels.

Chapter 4, Directives

4-6

4.3.3 NSE

■ Syntax ■

NSE

■ Function ■

The NSE directive modifies the location to the next 16-byte boundary.

4.3.4 Code Example

The following example shows examples of statements and the location counter value (in hexadeci-
mal).

Location

DSEG

0000 DD1: DS 10H

0010 DD2: DS 10H

0020 ORG 100H

0100 DD3: DS 50H

0150

CSEG

0000 ORG 130H

0130 JP 140H

0132 NSE

0140 NOP

Chapter 4, Directives

4-7

4.4 Data Definitions
Data definition directives initialize code memory in one or two-byte units.

4.4.1 DB

■ Syntax ■

[label :] DB constant_expression_list

■ Function ■

The DB directive defines the contents of code memory in 1-byte units. Therefore it can only be
used in the code segment. A string expression can be used as the constant expression list. Data is
allocated to memory in the order it listed starting from the current program address.

If the location symbol ($) is specified, then the assembler will recognize it as the code address value
of the memory to be defined.

4.4.2 DW

■ Syntax ■

[label :] DW constant_expression_list

■ Function ■

The DW directive defines the contents of code memory in 2-byte units. Therefore it can only be
used in the code segment. A string expression cannot be used as the constant expression list. Data
is allocated to memory in the order it is listed starting from the current program address, low byte
followed by high byte.

If the location symbol ($) is specified, then the assembler will recognize it as the code address value
of the memory to be defined.

Chapter 4, Directives

4-8

4.4.3 Code Example

DB 12H,34H ; Allocates in order 12, 34.

TBL: DB "AB","CD" ; Allocates in order 41, 42, 43, 44.

DW 1234H ; Allocates in order 34, 12.

DW 12H,34H ; Allocates in order 12, 00, 34, 00.

Chapter 4, Directives

4-9

4.5 Listing Control
Listing control directives affect the output format of the assembly listing (print file). They have
absolutely no effect on the code generated as the result of assembly.

4.5.1 DATE

■ Syntax ■

DATE "string of up to 255 characters"

■ Function ■

The DATE directive assigns the date to be inserted in the print file header.

If no date is specified with a DATE directive, then the date of assembly obtained from the operating
system will be assigned. The string is enclosed in double quotation marks (“). Up to 255 charac-
ters are valid in the specified string. If the string exceeds 255 characters, then the excess will be
ignored.

If the DATE directive is specified two or more times, then the assembler will recognize the last
specified one as effective.

4.5.2 TITLE

■ Syntax ■

TITLE "string of up to 255 characters"

■ Function ■

The TITLE directive assigns a title to be inserted in the print file header.

If no title is specified with a TITLE directive, then the title will be blank. The string is enclosed in
double quotation marks (“). Up to 255 characters are valid in the specified string. If the string
exceeds 255 characters, then the excess will be ignored.

If the TITLE directive is specified two or more times, then the assembler will recognize the last
specified one as effective.

Chapter 4, Directives

4-10

4.5.3 PAGE

■ Syntax ■

PAGE [rows] [, columns]

■ Function ■

The PAGE directive specifies a new page in the print file. The row and column numbers are pro-
vided only for compatibility with ASM64K, and are ignored by SASM64K.

4.5.4 OBJ/NOOBJ

■ Syntax ■

OBJ [(file_name)]
NOOBJ

■ Function ■

These directives specify the generation and output of the object file.

The NOOBJ directive specifies that no object file is to be generated.

The OBJ directive specifies that an object file is to be generated, and that it is to be output to the
file specified by file_name. If file_name is omitted, then the assembler will use the default output
specification. Refer to section 2.2, “File Specifications,” for default file names.

The default directive is OBJ.

4.5.5 PRN/NOPRN

■ Syntax ■

PRN [(file_name)]
NOPRN

■ Function ■

These directives specify the generation and output of the print file.

The NOPRN directive specifies that no print file is to be generated.

The PRN directive specifies that a print file is to be generated, and that it is to be output to the file
specified by file_name. If file_name is omitted, then the assembler will use the default output spec-
ification. Refer to section 2.2, “File Specifications,” for default file names.

The default directive is NOPRN.

Chapter 4, Directives

4-11

4.5.6 ERR/NOERR

■ Syntax ■

ERR [(file_name)]
NOERR

■ Function ■

These directives would specify the generation and output of the error file. However, they are pro-
vided only for compatibility with ASM64K, and are ignored by SASM64K. To output an error file,
specify the /E option when you start the assembler.

4.5.7 SYM/NOSYM

■ Syntax ■

SYM
NOSYM

■ Function ■

These directives specify whether or not a symbol list is to be output to the print file.

The NOSYM directive specifies to not output a symbol list to the print file.

The SYM directive specifies to output a symbol list to the print file. However, if NOPRN has been
specified, then SYM will be ineffective.

The default directive is NOSYM.

4.5.8 REF/NOREF

■ Syntax ■

REF
NOREF

■ Function ■

These directives specify whether or not a cross-reference list is to be output to the print file.

The NOREF directive specifies to not output a cross-reference list to the print file.

The REF directive specifies to output a cross-reference list to the print file. However, if NOPRN
has been specified, then REF will be ineffective.

The default directive is NOREF.

Chapter 4, Directives

4-12

4.5.9 LIST/NOLIST

■ Syntax ■

LIST
NOLIST

■ Function ■

The LIST directive specifies that following statements are to be listed. The NOLIST directive
specifies that the listing of following statements is to be suppressed. Each of these is effective until
its counterpart is next specified. However, if NOPRN has been specified, then LIST will be inef-
fective.

The default when the assembler starts is LIST.

4.5.10 Code Example

TYPE (M64162)

TITLE "Sample Program"

DATE "Sep. 10th 92"

PAGE 60,80

OBJ

PRN(SAMPL3.LST)

SYM

:

NOLIST

LAI 5 ; These two lines are not output

LMA ; to the assembly list.

LIST

:

Chapter 4, Directives

4-13

4.6 Optimization
4.6.1 B

■ Syntax ■

B symbol (label)

■ Function ■

The B (branch) directive is provided to make more efficient use of jump instructions. Depending
on the symbol (label) indicated as a branch destination, the B directive will convert between JCP
(1-byte instruction), JP (2-byte instruction), and LJP (3-byte instruction).

When the branch destination is within a 64-byte boundary, the B directive will convert to a JCP
instruction. When the branch destination is within a 2K-byte boundary, it will convert to a JP
instruction. When the branch destination is in the entire ROM area, it will convert to a LJP instruc-
tion.

Only labels are permitted as operands. Calculation expressions that use labels are not permitted.

4.6.2 GOTO

■ Syntax ■

GOTO symbol (label)

■ Function ■

The GOTO directive is the same as the B directive. It can be used instead of the B directive.

Chapter 4, Directives

4-14

4.6.3 BCAL

■ Syntax ■

BCAL symbol (label)

■ Function ■

The BCAL (branch call) directive is provided to make more efficient use of call instructions.
Depending on the symbol (label) indicated as a call destination, the BCAL directive will convert
between CAL (2-byte instruction) and LCAL (3-byte instruction).

When the branch destination is within a 2K-byte boundary, the BCAL directive will convert to a
CAL instruction. When the branch destination is in the entire ROM area, it will convert to a LCAL
instruction.

Only labels are permitted as operands. Calculation expressions that use labels are not permitted.

4.6.4 Code Example

The following example shows examples of statements and the location counter value (in hexadeci-
mal).

Location

0000 LOOP0:
: :
: :

0700 LOOP1:
: :
: :

073F B LOOP1 ; Converts to JCP instruction.
: :
: :

07FF SUB0: B LOOP1 ; Converts to LJP instruction.
0801 B LOOP0 ; Converts to LJP instruction.
0804

: :
: :

0900 BCAL SUB1 ; Converts to CAL instruction.
0902 BCAL SUB0 ; Converts to LCAL instruction.

: :
: :

0910 SUB1:

Chapter 4, Directives

4-15

4.7 Assembler Control
4.7.1 TYPE

■ Syntax ■

TYPE (DCL_file_name)

■ Function ■

The TYPE directive specifies the DCL file name for the target device of assembly.

The assembler reads the DCL file specified by the TYPE directive and performs initial assembly
settings based on the device features. Therefore, a TYPE directive must be coded at the start of a
program.

A path name can be specified for the file specification. In such cases the assembler will not refer to
the PATH environment variable.

An extension can be specified for the file specification, but DCL file extensions are restricted to
“.DCL.”

A TYPE directive must be coded before all instructions and before the following directives.

EQU SET CODE DATA DB DW DS ORG NSE B BCAL DEFINE MACRO

If the TYPE directive violates any of the above rules, then assembly will not be performed.

Refer to section 1.3, “DCL Files,” for details on DCL files.

4.7.2 END

■ Syntax ■

END

■ Function ■

The END directive is the statement that indicates the end of the program. The assembler will
assemble until the END directive.

Labels and operands cannot be coded with the END directive.

Chapter 4, Directives

4-16

4.8 Preprocessor Directives
4.8.1 INCLUDE

■ Syntax ■

INCLUDE (file_name)

■ Function ■

The INCLUDE directive expands to the file specified by file_name at the position where the direc-
tive is coded. No extension is assumed for file_name, so the extension must be coded if one exists.
If not path is specified for file_name, then the assembler will search the current directory.

Files expanded with the INCLUDE directive may themselves contain INCLUDE directives.

■ Example ■

INCLUDE(macro.lib)

4.8.2 DEFINE

■ Syntax ■

DEFINE symbol text_string

■ Function ■

The DEFINE directive assigns a text string to a symbol. Whenever the assembler encounters the
symbol in the source program, it will replace the symbol with the text string.

There must be at least one space or tab between the symbol and the text string. This space or tab
will not be included in the text string. The text string is a string of any characters. The assembler
recognizes the end of the text string by the carriage return or semicolon (;).

A symbol with the same name cannot be doubly defined with the DEFINE directive, but if the text
strings are identical then a double definition is possible.

■ Example ■

DEFINE FLAG [OFFSET WORK][0]

Chapter 4, Directives

4-17

4.8.3 SUB

■ Syntax ■

SUB symbol [LOCAL(symbol_list)]
.
.
.

ENDSUB

■ Function ■

The SUB directive causes the statements between SUB and ENDSUB to be assembled if the sym-
bol has previously been referenced. If the symbol has not been referenced, then the statements to
the ENDSUB directive will be ignored.

This directive also automatically adds a label definition for the symbol at the start of the statement
block.

The statement block between SUB and ENDSUB can contain local labels. When declaring local
labels, then those label names are enclosed in parentheses after LOCAL. If there are multiple local
lables, then they are delimited by commas. The local label name is replaced with a different name
for each expansion. So, same name can be used in multiple statement blocks.

The SUB directive cannot be coded between another SUB and ENDSUB directive.

Refer to Chapter 10 “Sample Programs” regarding actual usage of the SUB directive.

■ Example ■

BCAL SUB1

SUB SUB1 LOCAL(LAB1,LAB2)
LAB1:

[HL]=A
LAB2:

.

.
ENDSUB

SUB SUB2 LOCAL(LAB1)
[HL]=A

LAB1:
.
.

ENDSUB

BCAL SUB2 ; Error—label SUB2 is not defined.

In the above example SUB1 is expanded because it was previously referenced, but SUB2 is a for-
ward reference and is therefore ignored. Double-defined LAB1 will not cause an error because
LAB1 is declared as a local label.

Chapter 4, Directives

4-18

4.8.4 REFER

■ Syntax ■

REFER symbol

■ Function ■

The REFER directive is used to expand a block selected by a SUB directive regardless of whether
or not the symbol has been referenced. In other words, by declaring a symbol with the REFER
directive, it will be handled as a referenced symbol.

■ Example ■

REFER SUB2
SUB SUB2

[HL]=A
.
.
.

ENDSUB

In this example, the symbol SUB2 is declared with a REFER directive, so the statement block
between SUB and ENDSUB will be assembled unconditionally.

4.8.5 Macro Definitions

■ Syntax ■

MACRO symbol ([parameter_list])[LOCAL(symbol_list)]
.
.
.

ENDM

■ Function ■

Macros assign a series of statements to a single symbol. The programmer can then express the
series of statements using that symbol. Macro expansion is performed during assembly each time
the assembler encounters a symbol defined as a macro.

In addition, parameters can be defined for assigning different strings each time the macro is
expanded. When label definitions are needed for statements within a macro, the LOCAL label defi-
nition is necessary to generate a different name for each expansion.

The macro definition is coded for the symbol after MACRO. The parameter list is enclosed in
parentheses after the symbol. The parentheses are needed even if there are no parameters. The
parameter list is a list of symbols delimited by commas (,). If there are label definitions within the

Chapter 4, Directives

4-19

macro, then those label names are enclosed in parentheses after LOCAL. If there are multiple local
labels, then they are delimited by commas.

Parameter names and local label names are valid only within their macro definition. They cannot
be referenced elsewhere. This means that parameters and local labels with identical names can be
used within other macro definitions.

■ Example ■

(1) Example of simplest macro definition

MACRO SHIFT_L()
RC
RAL

ENDM

(2) Example of macro with parameter

MACRO LBI (cnt)
LAI cnt
LBA

ENDM

(3) Example of macro with local label

MACRO INHL() LOCAL (label1)
INL
B label1
INH

label1: ; This is replaced with a different name each time the macro is expanded.

ENDM

4.8.6 Macro Calls

■ Syntax ■

symbol ([argument_list])

■ Function ■

For a macro call, the symbol must be the symbol of a previous macro definition. When arguments
are needed, the argument list is enclosed in parentheses following the symbol. Multiple arguments
are delimited by commas (,). The parentheses are required even when there are no arguments.

An argument is a string of any characters that ends just before a comma or right parenthesis.
Arguments will be substituted for their corresponding parameters in the macro definition.

Chapter 4, Directives

4-20

■ Example ■

These examples call the macros defined on the previous page.

(1) SHIFT_L()

This call will expand as follows.

RC
RAL

(2) LBI(5 + 1)

The macro defined a parameter “cnt,” so this call will replace “cnt” in the macro with “5 + 1.”
Thus the call will expand as follows.

LAI 5 + 1
LBA

When a right parenthesis or comma is needed within an argument, add a backslash (\) before it, as
shown in the example below.

LBI(2*(1+2\))

(3) INHL()

The assembler expands this call by giving a new name to local label “label1.”

INL
B ?00001
INH

?00001:

Chapter 5

SASM Instructions
This chapter explains SASM instructions. SASM instructions are extended instructions that are
more object oriented, are easier to read, and easier to code than device instructions. Refer to chap-
ter 6 for details of each instruction.

Chapter 5, SASM Instructions

5-1

5.1 SASM Instruction Syntax
SASM instructions are instructions that combine multiple native CPU instructions (hereafter called
basic instructions) to further enhance object orientation of data. Coding is similar to high-level lan-
guages, making programs easier to read and understand. SASM instructions are coded as follows:

LABEL: C, [HL] += 3
label definition option data object operator data object

The statement ends with a carriage return, just like other statements. Options and label definitions
are specified as necessary.

5.1.1 Skips

Some SASM instructions follow “skips” the same as basic instructions. If another SASM instruc-
tion is placed immediately after a “skipping” SASM instruction, then the skipped instruction will be
one basic instruction, not the SASM instruction.

■ Example ■

B == L ;LAL SASM instruction to skip
;CAB

B = 4 ;LAI 4
;LBA

In the above example, B==L is the skipping instruction. The B=4 instruction expands to the two
basic instructions LAI 4 and LBA, so when the skip condition is met, the only instruction skipped
will be LAI 4. LBA will be executed.

Chapter 5, SASM Instructions

5-2

5.1.2 Data Objects

Data objects are operands that are the objects of calculations. They are either nibbles, bytes, or bits.
The data objects of each type are listed below.

Nibble data objects

Data Object Meaning

A Register A

B Register B

L Register L

H Register H

Y Register Y

X Register X

[HL] Data nibble in memory indicated by register pair HL.

[XY] Data nibble in memory indicated by register pair XY.

[n8] Data nibble in memory at address n8.

[HL+] Data nibble in memory indicated by register pair HL, which is incremented after it is ref
erenced.

[HL-] Data nibble in memory indicated by register pair HL, which is decremented after it is ref
erenced.

n4 Integer constant with value 0 to 15.

Byte data objects

Data Object Meaning

BA Register pair BA

HL Register pair HL

XY Register pair XY

BYTE[HL] Data byte in memory indicated by register pair HL.

BYTE[XY] Data byte in memory indicated by register pair XY.

BYTE[n8] Data byte in memory at address n8

n8 Integer constant with value 0 to 255.

Chapter 5, SASM Instructions

5-3

Bit data objects

Data Object Meaning

C Carry flag

A[n2] Bit number n2+1 from the least significant bit of register A.

[HL][n2] Bit number n2+1 (from the least significant bit) in memory indicated by register pair HL.

[XY][n2] Bit number n2+1 (from the least significant bit) in memory indicated by register pair XY.

[n8][n2] Bit number n2+1 (from the least significant bit) in memory at address n8.

[HL+][n2] Bit number n2+1 (from the least significant bit) in memory indicated by register pair HL,
which is incremented after it is referenced.

[HL-][n2] Bit number n2+1 (from the least significant bit) in memory indicated by register pair HL,
which is decremented after it is referenced.

n1 Integer constant with value 0 or 1.

HL can be omitted, as shown in the examples below

■ Example ■

[] ; Same as [HL]

[+] ; Same as [HL+]

[][2] ; Same as [HL][2]

[HL+] and [HL-] cannot be used in skipping instructions. They also cannot be used as both the left
and right data objects in a statement. When an instruction uses one of these data objects, if the
result of incrementing or decrementing HL generates an overflow or borrow, then the next basic
instruction will be skipped.

■ Example ■

[HL+] = A ;correct

[HL+] += 3 ;error—cannot be used in skipping instruction

[HL+] = [HL-] ;error—cannot be used on both sides

Chapter 5, SASM Instructions

5-4

5.1.3 Operators

This section shows which operators are appropriate for which calculations with data objects. Some
operators work on two data objects, and some on one. When they work on two data objects, the
size of both must match.

There are restrictions on the data objects that can be used with operators. For details refer to chap-
ter 6, “SASM Instruction Details.”

Transfer operators

Operator Meaning Type

obj1 = obj2 Assigns contents of obj2 to obj1. bit, nibble, byte

obj1 <> obj2 Exchanges contents of obj1 and obj2. bit, nibble, byte

Comparison operators

Operator Meaning Type

obj1 == obj2 If obj1 is equal to obj2, then do not execute the next basic bit, nibble, byte
instruction.

obj1 != obj2 If obj1 is not equal to obj2, then do not execute the next basic bit, nibble, byte
instruction.

obj1 < obj2 If obj1 is less than obj2, then do not execute the next basic nibble, byte
instruction.

obj1 <= obj2 If obj1 is less than or equal to obj2, then do not execute the next nibble, byte
basic instruction.

obj1 > obj2 If obj1 is greater than obj2, then do not execute the next basic nibble, byte
instruction.

obj1 >= obj2 If obj1 is greater than or equal to obj2, then do not execute the nibble, byte
next basic instruction.

Chapter 5, SASM Instructions

5-5

Arithmetic operators

Operator Meaning Type

obj1 += obj2 Assign the addition of obj1 and obj2 to obj1. nibble, byte
obj1 –= obj2 Assign the subtraction of obj2 from obj1 to obj1. nibble, byte
obj1 &= obj2 Assign the bitwise logical AND of obj1 and obj2 to obj1. nibble, byte

obj1 |= obj2 Assign the bitwise logical OR of obj1 and obj2 to obj1. nibble, byte

obj1 ^= obj2 Assign the bitwise exclusive OR of obj1 and obj2 to obj1. nibble, byte

obj1 >> obj2 Right shift obj1 by the value of obj2. nibble, byte

obj1 << obj2 Left shift obj1 by the value of obj2. nibble, byte

obj1++ Increment obj1. If the increment generates an overflow, nibble, byte
then skip the next instruction.

obj1–– Decrement obj1. If the decrement generates a borrow, nibble, byte
then skip the next instruction.

Chapter 5, SASM Instructions

5-6

5.1.4 Options

Options allow finer control of instruction operation. An options is specified before the SASM
instruction and delimited from it by a comma (,).

Multiple differing options can be coded. In such cases the options should be delimited by commas.
Their order is irrelevant. The same option cannot be coded multiple times.

Option types and functions are shown below.

C (carry) option

Instruction Used In Function

Used in addition (+=) Perform addition with carry. If the addition generates an overflow, then the
carry will be set.

Used in subtraction (–=) Perform subtraction with carry. If the subtraction generates a borrow, then the
carry will be set.

Used in right shift (>>) Perform right rotate including carry.

Used in left shift (<<) Perform left rotate including carry.

Used in other instructions No effect.

NS (no skip) option

Instruction Used In Function

Used in increment (++) Do not skip the next instruction even if the increment generates an overflow.

Used in decrement (––) Do not skip the next instruction even if the decrement generates a borrow.

Used in other instructions No effect.

■ Example ■

C, [80H] += [] ;Add with carry.

NS, HL++ ;Do not skip on overflow.

Chapter 5, SASM Instructions

5-7

5.1.5 Data Object Restrictions

There are restrictions on the data objects that can be used with the operators. The table below lists
the data option restrictions. Depending on the instruction, there may be various other restrictions,
so refer to chapter 6, “SASM Instruction Details.”

● Nibble

Data objects: A, B, H, L, X, Y, [HL], [XY], [n8], n4

obj1, operation, obj2:

Type Operation obj1 obj2 [HL+],[HL-]

Transfer = All except n4 All Allowed

<> All except n4 All except n4 Allowed

Comparison == All except n4 All Not allowed

!= All except n4 All Not allowed

> All except n4 [HL], [XY], n4 Not allowed

>= All except n4 [HL], [XY], n4 Not allowed

< All except n4 [HL], [XY], n4 Not allowed

<= All except n4 [HL], [XY], n4 Not allowed

Arithmetic += All except n4 [HL], [XY], n4 Allowed

–= All except n4 [HL], [XY], n4 Allowed

&= All except n4 [HL], [XY], n4 Allowed

|= All except n4 [HL], [XY], n4 Allowed

^= All except n4 [HL], [XY], n4 Allowed

>> All except n4 n4 Allowed

<< All except n4 n4 Allowed

++ All except n4 None Not allowed

–– All except n4 None Not allowed

Chapter 5, SASM Instructions

5-8

● Byte

Data objects: BA, HL, XY, BYTE[HL], BYTE[XY], n8

obj1, operation, obj2:

Type Operation obj1 obj2 Notes

Transfer = All except n8 All –

<> All except n8 All except n8 See Note 1

Comparison == All except n8 All See Note 1

!= All except n8 All See Note 1

> All except n8 BYTE[HL], BYTE[XY], n8 –

>= All except n8 BYTE[HL], BYTE[XY], n8 –

< All except n8 BYTE[HL], BYTE[XY], n8 –

<= All except n8 BYTE[HL], BYTE[XY], n8 –

Arithmetic += All except n8 BYTE[HL], BYTE[XY], n8 –

–= All except n8 BYTE[HL], BYTE[XY], n8 –

&= All except n8 BYTE[HL], BYTE[XY], n8 See Note 2

|= All except n8 BYTE[HL], BYTE[XY], n8 See Note 2

^= All except n8 BYTE[HL], BYTE[XY], n8 See Note 2

>> All except n8 n8 –

<< All except n8 n8 –

++ All except n8 None –

–– All except n8 None –

[Note 1] Combinations of BA, HL, XY not allowed.

[Note 2] Combinations of BA, BYTE[HL], BYTE[XY] not allowed.

● Bit

Data objects: A[n2], [HL][n2], [XY][n2], [n8][n2], n1

obj1, operation, obj2:

Type Operation obj1 obj2 [HL+],[HL-]

Transfer = All except n1 All Allowed

<> All except n1 All except n1 Allowed

Comparison == All except n1 All Not allowed

!= All except n1 All Not allowed

Chapter 5, SASM Instructions

5-9

5.1.6 SASM Instruction Expansion

If the operation of a SASM instruction is that of a basic instruction, then it will always expand into
that basic instruction. For example, A=1 will always expand to LAI 1. When a SASM instruction
expands to multiple basic instructions which need a register temporarily, it will use the A register,
B register, or carry. Therefore you should be aware when using SASM instructions that there is a
possibility that the contents of those registers or carry may change.

You can see how SASM instructions are expanded by specifying the /A option when you start the
assembler and then looking at the assembly source file output.

Chapter 5, SASM Instructions

5-10

Chapter 6

SASM Instruction
Details
This chapter explains the details of SASM instructions. Be sure to read this chapter if you will use
SASM instructions.

Chapter 6, SASM Instruction Details

6-1

6.1 Nibble Assignments

■ Syntax ■

obj1 = obj2

■ Function ■

Assigns obj2 to obj1.

■ Data Objects Allowed ■

obj1: A, B, L, H, Y, X, [HL], [XY], [n8], [HL+], [HL-]
obj2: A, B, L, H, Y, X, [HL], [XY], [n8], [HL+], [HL-], n4

■ Options ■

None

■ Examples ■

Source Expansion

A = [HL] LAM

[70H] = [XY] LAM @XY

LMAD 070H

[HL+] = 4 LAI 04H

LMA+

Chapter 6, SASM Instruction Details

6-2

■ Byte Number ■

obj1 obj2

A B L H Y X [HL] [XY] [m8] [HL+] [HL–] n4

A 0 2 1 1 1 1 1 2 2 1 1 1

B 2 0 2 2 2 2 2 3 3 3 3 2

L 1 3 0 2 2 2 2 3 3 3 3 1

H 1 3 2 0 2 2 2 3 3 3 3 2

Y 1 3 2 2 0 2 2 3 3 3 3 2

X 1 3 2 2 2 0 2 3 3 3 3 2

[HL] 1 3 2 2 2 2 0 3 3 1 1 2

[XY] 2 4 3 3 3 3 3 0 4 4 4 3

[m8] 2 4 3 3 3 3 3 4 4 4 4 3

[HL+] 1 3 2 2 2 2 1 3 3 – – 2

[HL–] 1 3 2 2 2 2 1 3 3 – – 2

Chapter 6, SASM Instruction Details

6-3

6.2 Nibble Exchanges

■ Syntax ■

obj1 <> obj2

■ Function ■

Exchanges contents of obj1 and obj2.

■ Data Objects Allowed ■

obj1: A, B, L, H, Y, X, [HL], [XY], [n8], [HL+], [HL-]
obj2: A, B, L, H, Y, X, [HL], [XY], [n8], [HL+], [HL-]

■ Options ■

None

■ Examples ■

Source Expansion

[70H] <> A XAMD 070H

[HL] <> [XY] LAM

XAM @XY

LMA

B <> [HL+] LAM

XAB

LMA+

Chapter 6, SASM Instruction Details

6-4

■ Byte Number ■

obj1 obj2

A B L H Y X [HL] [XY] [m8] [HL+] [HL–] n4

A 0 1 5 5 5 5 1 2 2 1 1 –

B 1 0 3 3 3 3 3 4 4 3 3 –

L 5 3 0 6 6 6 3 4 4 4 4 –

H 5 3 6 0 6 6 3 4 4 4 4 –

Y 5 3 6 6 0 6 3 4 4 4 4 –

X 5 3 6 6 6 0 3 4 4 4 4 –

[HL] 1 3 3 3 3 3 0 4 4 1 1 –

[XY] 2 4 4 4 4 4 4 0 6 4 4 –

[m8] 2 4 4 4 4 4 4 6 6 4 4 –

[HL+] 1 3 4 4 4 4 1 4 4 – – –

[HL–] 1 3 4 4 4 4 1 4 4 – – –

Chapter 6, SASM Instruction Details

6-5

6.3 Nibble Equivalence Comparisons

■ Syntax ■

(1) obj1 == obj2
(2) obj1 != obj2

■ Function ■

(1) If obj1 is equal to obj2 ,then skip the next basic instruction.
(2) If obj1 is not equal to obj2, then skip the next basic instruction.

■ Data Objects Allowed ■

obj1: A, B, L, H, Y, X, [HL], [XY], [n8]
obj2: A, B, L, H, Y, X, [HL], [XY], [n8], n4

■ Options ■

None

■ Examples ■

Source Expansion

Y == 3 LAY

CAI 03H

[70H] == [72H] LAMD 070H

CAMD 072H

A != B SC

CAB

TC

A != [HL] EOR

AIS 0FH

Chapter 6, SASM Instruction Details

6-6

■ Byte Number ■

(1)

obj1 obj2

A B L H Y X [HL] [XY] [m8] [HL+] [HL–] n4

A 0 1 3 3 3 3 1 2 2 – – 2

B 1 0 2 2 2 2 2 3 3 – – 2

L 3 2 0 3 4 4 2 3 3 – – 2

H 3 2 3 0 4 4 2 3 3 – – 3

Y 3 2 4 4 0 3 2 3 3 – – 3

X 3 2 4 4 3 0 2 3 3 – – 3

[HL] 1 2 2 2 2 2 0 3 3 – – 2

[XY] 2 3 3 3 3 3 3 0 4 – – 3

[m8] 2 3 3 3 3 3 3 4 4 – – 3

[HL+] – – – – – – – – – – – –

[HL–] – – – – – – – – – – – –

(2)

obj1 obj2

A B L H Y X [HL] [XY] [m8] [HL+] [HL–] n4

A 0 3 5 5 5 5 2 3 4 – – 3

B 3 0 4 4 4 4 3 4 5 – – 5

L 5 4 0 5 6 6 3 4 5 – – 4

H 5 4 5 0 6 6 3 4 5 – – 4

Y 5 4 6 6 0 5 3 4 5 – – 4

X 5 4 6 6 5 0 3 4 5 – – 4

[HL] 2 3 3 3 3 3 0 4 4 – – 3

[XY] 3 4 4 4 4 4 4 0 5 – – 4

[m8] 4 5 5 5 5 5 4 5 6 – – 5

[HL+] – – – – – – – – – – – –

[HL–] – – – – – – – – – – – –

Chapter 6, SASM Instruction Details

6-7

6.4 Nibble Greater/Less-Than Comparisons

■ Syntax ■

(1) obj1 > obj2
(2) obj1 >= obj2
(3) obj1 < obj2
(4) obj1 <= obj2

■ Function ■

(1) If obj1 is greater than obj2, then skip the next basic instruction.
(2) If obj1 is greater than or equal to obj2, then skip the next basic instruction.
(3) If obj1 is less than obj2, then skip the next basic instruction.
(4) If obj1 is less than or equal to obj2, then skip the next basic instruction.

■ Data Objects Allowed ■

obj1: A, B, L, H, Y, X, [HL], [XY], [n8]
obj2: [HL], [XY], n4

■ Options ■

None

■ Examples ■

Source Expansion

A > [HL] SC

SUBCS

A >= [XY] RC

SUBCS @XY

L < [HL] LAL

SUBS

A <= 2 SC

AIS ((˜(02H))&0FH)

TC

Chapter 6, SASM Instruction Details

6-8

■ Byte Number ■

(1)

obj1 obj2

[HL] [XY] n4

A 2 3 1

B 4 5 3

L 3 4 2

H 3 4 2

Y 3 4 2

X 3 4 2

[HL] 0 4 2

[XY] 4 0 3

[m8] 4 5 3

[HL+] – – –

[HL–] – – –

(3)

obj1 obj2

[HL] [XY] n4

A 1 2 3

B 3 4 5

L 2 3 4

H 2 3 4

Y 2 3 4

X 2 3 4

[HL] 0 3 4

[XY] 3 0 5

[m8] 3 4 5

[HL+] – – –

[HL–] – – –

(2)

obj1 obj2

[HL] [XY] n4

A 2 3 4

B 4 5 6

L 3 4 5

H 3 4 5

Y 3 4 5

X 3 4 5

[HL] 0 4 5

[XY] 4 0 6

[m8] 4 5 6

[HL+] – – –

[HL–] – – –

(4)

obj1 obj2

[HL] [XY] n4

A 3 4 3

B 5 6 5

L 4 5 4

H 4 5 4

Y 4 5 4

X 4 5 4

[HL] 0 5 4

[XY] 5 0 5

[m8] 5 6 5

[HL+] – – –

[HL–] – – –

Chapter 6, SASM Instruction Details

6-9

6.5 Nibble Additions & Subtractions

■ Syntax ■

(1) obj1 += obj2
(2) obj1 Ð= obj2

■ Function ■

(1) Assign the addition of obj1 and obj2 to obj1.
(2) Assign the subtraction of obj2 from obj1 to obj1.

■ Data Objects Allowed ■

obj1: A, B, L, H, Y, X, [HL], [XY], [n8], [HL+], [HL-]
obj2: [HL], [XY], n4

■ Options ■

C Perform both addition and subtraction with carry. If the result generates an over-
flow or borrow, then set the carry.

■ Examples ■

Source Expansion

[HL] += 4 LAM

AIS 04H

NOP

LMA

C, [HL+] += 4 LAI 04H

ADC

XAM+

B –= [XY] XAB

SUBS @XY

NOP

XAB

Chapter 6, SASM Instruction Details

6-10

■ Byte Number ■

(1)

obj1 obj2

[HL] [XY] n4

A 2 3 2

B 4 5 4

L 4 5 4

H 4 5 4

Y 4 5 4

X 4 5 4

[HL] 4 5 4

[XY] 6 6 6

[m8] 6 7 6

[HL+] 4 5 4

[HL–] 4 5 4

(1) with C option

obj1 obj2

[HL] [XY] n4

A 1 2 7

B 3 4 9

L 3 4 9

H 3 4 9

Y 3 4 9

X 3 4 9

[HL] 3 4 3

[XY] 5 6 5

[m8] 5 6 11

[HL+] 3 4 3

[HL–] 3 4 3

(2)

obj1 obj2

[HL] [XY] n4

A 2 3 2

B 4 5 4

L 4 5 4

H 4 5 4

Y 4 5 4

X 4 5 4

[HL] 2 5 4

[XY] 6 3 6

[m8] 6 7 6

[HL+] 2 5 4

[HL–] 2 5 4

(2) with C option

obj1 obj2

[HL] [XY] n4

A 1 2 11

B 3 4 13

L 3 4 13

H 3 4 13

Y 3 4 13

X 3 4 13

[HL] 3 4 4

[XY] 5 6 7

[m8] 5 6 15

[HL+] 3 4 4

[HL–] 3 4 4

Chapter 6, SASM Instruction Details

6-11

6.6 Nibble Logical Operations

■ Syntax ■

(1) obj1 &= obj2
(2) obj1 |= obj2
(3) obj1 ^= obj2

■ Function ■

(1) Assign logical AND of obj1 and obj2 to obj1.
(2) Assign logical OR of obj1 and obj2 to obj1.
(3) Assign exclusive OR of obj1 and obj2 to obj1.

■ Data Objects Allowed ■

obj1: A, B, L, H, Y, X, [HL], [XY], [n8], [HL+], [HL-]
obj2: [HL], [XY], n4

■ Options ■

None

■ Examples ■

Source Expansion

H &= [XY] LAH

AND @XY

LHA

B |= 0AH XAB

ORI 0AH

XAB

[HL] ^= 5 LAI 05H

EOR

LMA

Chapter 6, SASM Instruction Details

6-12

■ Byte Number ■

(1)

obj1 obj2

[HL] [XY] n4

A 1 2 2

B 3 4 4

L 3 4 4

H 3 4 4

Y 3 4 4

X 3 4 4

[HL] 0 4 3

[XY] 5 0 5

[m8] 5 6 6

[HL+] 1 4 3

[HL–] 1 4 3

(3)

obj1 obj2

[HL] [XY] n4

A 1 2 2

B 3 4 4

L 3 4 4

H 3 4 4

Y 3 4 4

X 3 4 4

[HL] 2 4 3

[XY] 5 3 5

[m8] 5 6 6

[HL+] 3 4 3

[HL–] 3 4 3

(2)

obj1 obj2

[HL] [XY] n4

A 1 2 2

B 3 4 4

L 3 4 4

H 3 4 4

Y 3 4 4

X 3 4 4

[HL] 0 4 3

[XY] 5 0 5

[m8] 5 6 6

[HL+] 1 4 3

[HL–] 1 4 3

Chapter 6, SASM Instruction Details

6-13

6.7 Nibble Shifts

■ Syntax ■

(1) obj1 >> obj2
(2) obj1 << obj2

■ Function ■

(1) Right shift obj1 by value of obj2.
(2) Left shift obj1 by value of obj2.

■ Data Objects Allowed ■

obj1: A, B, L, H, Y, X, [HL], [XY], [n8], [HL+], [HL-]
obj2: n2

■ Options ■

C (1) Rotate, with the carry value assigned to bit 4 of obj1 (from the least
significant bit) and then bit 1 of obj1 assigned to the carry.

(2) Rotate, with the carry value assigned to bit 1 of obj1 (from the least
significant bit) and then bit 4 of obj1 assigned to the carry.

■ Examples ■

Source Expansion

L >> 1 LAL

RC

RAR

LLA

C, L >> 2 LAL

RAR

RAR

LAL

Chapter 6, SASM Instruction Details

6-14

■ Byte Number ■

(1)

obj1 obj2

n2=1

A 2

B 4

L 4

H 4

Y 4

X 4

[HL] 4

[XY] 6

[m8] 6

[HL+] 4

[HL–] 4

(1) with C option

obj1 obj2

n2=1

A 1

B 3

L 3

H 3

Y 3

X 3

[HL] 3

[XY] 5

[m8] 5

[HL+] 3

[HL–] 3

(2)

obj1 obj2

n2=1

A 2

B 4

L 4

H 4

Y 4

X 4

[HL] 4

[XY] 6

[m8] 6

[HL+] 4

[HL–] 4

(2) with C option

obj1 obj2

n2=1

A 1

B 3

L 3

H 3

Y 3

X 3

[HL] 3

[XY] 5

[m8] 5

[HL+] 3

[HL–] 3

Chapter 6, SASM Instruction Details

6-15

6.8 Nibble Increments & Decrements

■ Syntax ■

(1) obj1 ++
(2) obj 1 – –

■ Function ■

(1) Increment obj1. If the increment generates an overflow, then skip the next basic
instruction.

(2) Decrement obj1. If the decrement generates a borrow, then skip the next basic
instruction.

■ Data Objects Allowed ■

obj1: A, B, L, H, Y, X, [HL], [XY], [n8]

■ Options ■

NS Do not skip the next basic instruction even if the calculation result generates an
overflow or borrow.

■ Examples ■

Source Expansion

[XY]++ INM @XY

NS, [70H]++ INMD 070H

NOP

L-- DCL

NS, B-- XAB

DCA

NOP

XAB

Chapter 6, SASM Instruction Details

6-16

■ Byte Number ■

(1)

obj1 obj2

–

A 1

B 6

L 1

H 1

Y 1

X 1

[HL] 1

[XY] 2

[m8] 2

[HL+] –

[HL–] –

(1) with NS option

obj1 obj2

–

A 2

B 4

L 2

H 2

Y 2

X 2

[HL] 2

[XY] 3

[m8] 3

[HL+] –

[HL–] –

(2)

obj1 obj2

–

A 1

B 6

L 1

H 1

Y 1

X 1

[HL] 1

[XY] 2

[m8] 2

[HL+] –

[HL–] –

(2) with NS option

obj1 obj2

–

A 2

B 4

L 2

H 2

Y 2

X 2

[HL] 2

[XY] 3

[m8] 3

[HL+] –

[HL–] –

Chapter 6, SASM Instruction Details

6-17

6.9 Byte Assignments

■ Syntax ■

obj1 = obj2

■ Function ■

Assigns obj2 to obj1.

■ Data Objects Allowed ■

obj1: BA, HL, XY, BYTE[HL], BYTE[XY], BYTE[n8]
obj2: BA, HL, XY, BYTE[HL], BYTE[XY], BYTE[n8], n8

■ Options ■

None

■ Examples ■

Source Expansion

BA = HL LALB

BYTE[HL] = BYTE[XY] LAMB @XY

LMAB

Chapter 6, SASM Instruction Details

6-18

■ Byte Number ■

obj1 obj2

BA HL XY BYTE[HL] BYTE[XY] BYTE[m8] n8

BA 0 2 2 1 2 2 2

HL 2 0 4 3 4 4 2

XY 2 4 0 3 4 4 2

BYTE[HL] 1 3 3 0 3 3 2

BYTE[XY] 2 4 4 3 0 4 3

BYTE[m8] 2 4 4 3 4 4 4

Chapter 6, SASM Instruction Details

6-19

6.10 Byte Exchanges

■ Syntax ■

obj1 <> obj2

■ Function ■

Exchanges contents of obj 1 and obj2.

■ Data Objects Allowed ■

obj1: BA, HL, XY, BYTE[HL], BYTE[XY], BYTE[n8]
obj2: BA, HL, XY, BYTE[HL], BYTE[XY], BYTE[n8]

However, BA cannot be exchanged with HL or XY.

■ Options ■

None

■ Examples ■

Source Expansion

BA <> BYTE[70H] XAMDB 070H

BYTE[HL] <> BYTE[70H] LAMB

XAMDB 070H

LMAB

Chapter 6, SASM Instruction Details

6-20

■ Byte Number ■

obj1 obj2

BA HL XY BYTE[HL] BYTE[XY] BYTE[m8] n8

BA 0 – – 1 2 2 –

HL – 0 12 5 6 6 –

XY – 12 0 5 6 6 –

BYTE[HL] 1 5 5 0 4 4 –

BYTE[XY] 2 6 6 4 0 6 –

BYTE[m8] 2 6 6 4 6 6 –

Chapter 6, SASM Instruction Details

6-21

6.11 Byte Equivalence Comparisons

■ Syntax ■

(1) obj1 == obj2
(2) obj1 != obj2

■ Function ■

(1) If obj1 is equal to obj2 ,then skip the next basic instruction.
(2) If obj1 is not equal to obj2, then skip the next basic instruction.

■ Data Objects Allowed ■

obj1: BA, HL, XY, BYTE[HL], BYTE[XY], BYTE[n8]
obj2: BA, HL, XY, BYTE[HL], BYTE[XY], BYTE[n8], n8

However, BA cannot be compared with HL or XY.

■ Options ■

None

■ Examples ■

Source Expansion

BYTE[HL] == BYTE[XY] LAMB

CAMB @XY

BA == BYTE[70H] CAMD (070H)&0FEH

B ?00000

XAB

CAMD (070H)|01H

?00000:

BA != BYTE[HL] SC

CAMB

TC

Chapter 6, SASM Instruction Details

6-22

■ Byte Number ■

(1)

obj1 obj2

BA HL XY BYTE[HL] BYTE[XY] BYTE[m8] n8

BA 0 – – 1 2 6 6

HL – 0 9 3 4 8 6

XY – 9 0 3 4 8 8

BYTE[HL] 1 3 3 0 3 3 3

BYTE[XY] 2 4 4 3 0 4 4

BYTE[m8] 6 8 8 3 4 8 8

(2)

obj1 obj2

BA HL XY BYTE[HL] BYTE[XY] BYTE[m8] n8

BA 0 – – 3 4 8 8

HL – 0 11 5 6 10 8

XY – 11 0 5 6 10 10

BYTE[HL] 3 5 5 0 5 5 5

BYTE[XY] 4 6 6 5 0 6 6

BYTE[m8] 8 10 10 5 6 10 10

Chapter 6, SASM Instruction Details

6-23

6.12 Byte Greater/Less-Than Comparisons

■ Syntax ■

(1) obj1 > obj2
(2) obj1 >= obj2
(3) obj1 < obj2
(4) obj1 <= obj2

■ Function ■

(1) If obj1 is greater than obj2, then skip the next basic instruction.
(2) If obj1 is greater than or equal to obj2, then skip the next basic instruction.
(3) If obj1 is less than obj2, then skip the next basic instruction.
(4) If obj1 is less than or equal to obj2, then skip the next basic instruction.

■ Data Objects Allowed ■

obj1: BA, HL, XY, BYTE[HL], BYTE[XY], BYTE[n8]
obj2: BYTE[HL], BYTE[XY], n8

■ Options ■

None

■ Examples ■

Source Expansion

BYTE[HL] > 10H LBAI 010H

SUBSB

BYTE[XY] >= 10H LBAI 010H

SC

SUBCB @XY

TC

BA < BYTE[HL] SUBSB

BA <= BYTE[XY] SC

SUBCB @XY

TC

Chapter 6, SASM Instruction Details

6-24

■ Byte Number ■

(1)

obj1 obj2

BYTE[HL] BYTE[XY] n8

BA 6 7 12

HL 8 9 14

XY 8 9 14

BYTE[HL] 0 3 3

BYTE[XY] 3 0 4

BYTE[m8] 8 9 14

(3)

obj1 obj2

BYTE[HL] BYTE[XY] n8

BA 1 2 16

HL 3 4 18

XY 3 4 18

BYTE[HL] 0 3 8

BYTE[XY] 3 0 9

BYTE[m8] 3 4 18

(2)

obj1 obj2

BYTE[HL] BYTE[XY] n8

BA 3 4 16

HL 5 6 18

XY 5 6 18

BYTE[HL] 0 5 5

BYTE[XY] 5 0 6

BYTE[m8] 5 6 18

(4)

obj1 obj2

BYTE[HL] BYTE[XY] n8

BA 3 4 12

HL 5 6 14

XY 5 6 14

BYTE[HL] 0 5 5

BYTE[XY] 5 0 6

BYTE[m8] 5 6 14

Chapter 6, SASM Instruction Details

6-25

6.13 Byte Additions & Subtractions

■ Syntax ■

(1) obj1 += obj2
(2) obj1 -= obj2

■ Function ■

(1) Assign the addition of obj1 and obj2 to obj1.
(2) Assign the subtraction of obj2 from obj1 to obj1.

■ Data Objects Allowed ■

obj1: BA, HL, XY, BYTE[HL], BYTE[XY], BYTE[n8]
obj2: BYTE[HL], BYTE[XY], n8

■ Options ■

C Perform both addition and subtraction with carry. If the result generates an over-
flow or borrow, then set the carry.

■ Examples ■

Source Expansion

BA += BYTE[HL] ADSB

NOP

C, BYTE[HL] += 55H LBAI 055H

ADCB

LMAB

BYTE[70H] –= BYTE[HL] LAMDB 070H

SUBSB

NOP

LMADB 070H

C, BYTE[XY] –= 55H LBAI 055H

XAMB @XY

SUBCB @XY

XAMB @XY

Chapter 6, SASM Instruction Details

6-26

■ Byte Number ■

(1)

obj1 obj2

BYTE[HL] BYTE[XY] n8

BA 2 3 10

HL 6 7 14

XY 6 7 14

BYTE[HL] 4 5 5

BYTE[XY] 6 7 7

BYTE[m8] 6 7 14

(1) with C option

obj1 obj2

BYTE[HL] BYTE[XY] n8

BA 1 2 16

HL 5 6 20

XY 5 6 20

BYTE[HL] 3 4 4

BYTE[XY] 5 6 6

BYTE[m8] 5 6 20

(2)

obj1 obj2

BYTE[HL] BYTE[XY] n8

BA 2 3 10

HL 6 7 14

XY 6 7 14

BYTE[HL] 2 5 6

BYTE[XY] 6 3 9

BYTE[m8] 6 7 14

(2) with C option

obj1 obj2

BYTE[HL] BYTE[XY] n8

BA 1 2 24

HL 5 6 28

XY 5 6 28

BYTE[HL] 3 4 5

BYTE[XY] 5 6 8

BYTE[m8] 5 6 28

Chapter 6, SASM Instruction Details

6-27

6.14 Byte Logical Operations

■ Syntax ■

(1) obj1 &= obj2
(2) obj1 |= obj2
(3) obj1 ^= obj2

■ Function ■

(1) Assign logical AND of obj1 and obj2 to obj1.
(2) Assign logical OR of obj1 and obj2 to obj1.
(3) Assign exclusive OR of obj1 and obj2 to obj1.

■ Data Objects Allowed ■

obj1: BA, HL, XY, BYTE[HL], BYTE[XY], BYTE[n8]
obj2: BYTE[HL], BYTE[XY], n8

However, BA cannot be operationed with BYTE[HL] or BYTE[XY].

■ Options ■

None

■ Examples ■

Source Expansion

BA &= 55H ANDI ((055H)&0FH)

XAB

ANDI (((055H)>>04H)&0FH)

XAB

HL |= 55H LALB

ORI ((055H)&0FH)

XAB

ORI (((055H)>>04H)&0FH)

LLAB

BA ^= 55H EORI ((055H)&0FH)

XAB

EORI (((055H)>>04H)&0FH)

XAB

Chapter 6, SASM Instruction Details

6-28

■ Byte Number ■

(1)

obj1 obj2

BYTE[HL] BYTE[XY] n8

BA – – 6

HL 18 20 10

XY 18 20 10

BYTE[HL] 0 18 8

BYTE[XY] 18 0 10

BYTE[m8] 18 20 10

(3)

obj1 obj2

BYTE[HL] BYTE[XY] n8

BA – – 6

HL 18 20 10

XY 18 20 10

BYTE[HL] 2 18 8

BYTE[XY] 18 3 10

BYTE[m8] 18 20 10

(2)

obj1 obj2

BYTE[HL] BYTE[XY] n8

BA – – 6

HL 18 20 10

XY 18 20 10

BYTE[HL] 0 18 8

BYTE[XY] 18 0 10

BYTE[m8] 18 20 10

Chapter 6, SASM Instruction Details

6-29

6.15 Byte Shifts

■ Syntax ■

(1) obj1 >> obj2
(2) obj1 << obj2

■ Function ■

(1) Right shift obj1 by value of obj2.
(2) Left shift obj1 by value of obj2.

■ Data Objects Allowed ■

obj1: BA, HL, XY, BYTE[HL], BYTE[XY], BYTE[n8]
obj2: n3

■ Options ■

C (1) Rotate, with the carry value assigned to bit 8 of obj1 (from the least
significant bit) and then bit 1 of obj1 assigned to the carry.

(2) Rotate, with the carry value assigned to bit 1 of obj1 (from the least
significant bit) and then bit 8 of obj1 assigned to the carry.

■ Examples ■

Source Expansion

BA >> 1 RC

XAB

RAR

XAB

RAR

C, HL << 1 LALB

RAL

XAB

RAL

XAB

LLAB

Chapter 6, SASM Instruction Details

6-30

■ Byte Number ■

(1)

obj1 obj2

n3=1

BA 5

HL 9

XY 9

BYTE[HL] 7

BYTE[XY] 9

BYTE[m8] 9

(1) with C option

obj1 obj2

n3=1

BA 4

HL 8

XY 8

BYTE[HL] 6

BYTE[XY] 8

BYTE[m8] 8

(2)

obj1 obj2

n3=1

BA 5

HL 9

XY 9

BYTE[HL] 7

BYTE[XY] 9

BYTE[m8] 9

(2) with C option

obj1 obj2

n3=1

BA 4

HL 8

XY 8

BYTE[HL] 6

BYTE[XY] 8

BYTE[m8] 8

Chapter 6, SASM Instruction Details

6-31

6.16 Byte Increments & Decrements

■ Syntax ■

(1) obj1 ++
(2) obj1 ÐÐ

■ Function ■

(1) Increment obj1. If the increment generates an overflow, then skip the next basic
instruction.

(2) Decrement obj1. If the decrement generates a borrow, then skip the next basic
instruction.

■ Data Objects Allowed ■

obj1: BA, HL, XY, BYTE[HL], BYTE[XY], BYTE[n8]

■ Options ■

NS Do not skip the next basic instruction even if the calculation result generates an
overflow or borrow.

■ Examples ■

Source Expansion

HL++ INL

B ?00000

INH

?00000:

NS, XYÐÐ DCY

B ?00001

DCX

NOP

?00001:

Chapter 6, SASM Instruction Details

6-32

■ Byte Number ■

(1)

obj1 obj2

–

BA 8

HL 3

XY 3

BYTE[HL] 6

BYTE[XY] 8

BYTE[m8] 5

(1) with NS option

obj1 obj2

–

BA 6

HL 4

XY 4

BYTE[HL] 5

BYTE[XY] 7

BYTE[m8] 6

(2)

obj1 obj2

–

BA 8

HL 3

XY 3

BYTE[HL] 7

BYTE[XY] 9

BYTE[m8] 5

(2) with NS option

obj1 obj2

–

BA 6

HL 4

XY 4

BYTE[HL] 5

BYTE[XY] 7

BYTE[m8] 6

Chapter 6, SASM Instruction Details

6-33

6.17 Bit Assignments

■ Syntax ■

obj1 = obj2

■ Function ■

Assigns obj2 to obj1.

■ Data Objects Allowed ■

obj1: A[n2], [HL][n2], [XY][n2], [n8][n2], [HL+][n2], [HL-][n2]
obj2: A[n2], [HL][n2], [XY][n2], [n8][n2], [HL+][n2], [HL-][n2], n1

■ Options ■

None

■ Examples ■

Source Expansion

A[0] = 1 ORI 01H<<(00H)

[HL+][1] = 0 RMB 01H

INL

C = [70H][0] SC

TMDB 070H, 00H

RC

Chapter 6, SASM Instruction Details

6-34

■ Byte Number ■

obj1 obj2

C A[n2] [HL][n2] [XY][n2] [m8][n2] [HL+][n2] [HL–][n2] n1=0 n1=1

C 0 3 3 4 4 4 4 1 1

A[n2] 5 5 5 6 6 6 6 2 2

[HL][n2] 3 3 3 4 4 4 4 1 1

[XY][n2] 5 5 5 6 6 6 6 2 2

[m8][n2] 5 5 5 6 6 6 6 2 2

[HL+][n2] 4 4 4 5 5 – – 2 2

[HL–][n2] 4 4 4 5 5 – – 2 2

Chapter 6, SASM Instruction Details

6-35

6.18 Bit Exchanges

■ Syntax ■

obj1 <> obj2

■ Function ■

Exchanges contents of obj1 and obj2.

■ Data Objects Allowed ■

obj1: A[n2], [HL][n2], [XY][n2], [n8][n2], [HL+][n2], [HL-][n2]
obj2: A[n2], [HL][n2], [XY][n2], [n8][n2], [HL+][n2], [HL-][n2]

■ Options ■

None

■ Examples ■

Source Expansion

C <> [HL][2] LAM

SMB 02H

TC

RMB 02H

SC

TAB 02H

RC

Chapter 6, SASM Instruction Details

6-36

■ Byte Number ■

obj1 obj2

C A[n2] [HL][n2] [XY][n2] [m8][n2] [HL+][n2] [HL–][n2] n1=0 n1=1

C 0 12 7 10 10 8 8 – –

A[n2] 12 13 11 14 14 12 12 – –

[HL][n2] 7 11 7 10 10 8 8 – –

[XY][n2] 10 14 10 13 13 11 11 – –

[m8][n2] 10 14 10 13 13 11 11 – –

[HL+][n2] 8 12 8 11 11 – – – –

[HL–][n2] 8 12 8 11 11 – – – –

Chapter 6, SASM Instruction Details

6-37

6.19 Bit Equivalence Comparisons

■ Syntax ■

(1) obj1 == obj2
(2) obj1 != obj2

■ Function ■

(1) If obj1 is equal to obj2 ,then skip the next basic instruction.
(2) If obj1 is not equal to obj2, then skip the next basic instruction.

■ Data Objects Allowed ■

obj1: A[n2], [HL][n2], [XY][n2], [n8][n2]
obj2: A[n2], [HL][n2], [XY][n2], [n8][n2], n1

■ Options ■

None

■ Examples ■

Source Expansion

[XY][0] == A[1] TMB @XY, 00H

CMA

TAB 01H

[70H][1] == 1 TMBD 070H, 01H

[HL][0] != A[2] TMB 00H

B ?00000

CMA

?00000:

TAB 02H

C != 0 TC

Chapter 6, SASM Instruction Details

6-38

■ Byte Number ■

(1)

obj1 obj2

C A[n2] [HL][n2] [XY][n2] [m8][n2] [HL+][n2] [HL–][n2] n1=0 n1=1

C 0 4 5 6 6 – – 4 1

A[n2] 4 4 4 5 5 – – 3 1

[HL][n2] 5 4 5 6 6 – – 3 1

[XY][n2] 6 5 6 7 7 – – 4 2

[m8][n2] 6 5 6 7 7 – – 4 2

[HL+][n2] – – – – – – – – –

[HL–][n2] – – – – – – – – –

(2)

obj1 obj2

C A[n2] [HL][n2] [XY][n2] [m8][n2] [HL+][n2] [HL–][n2] n1=0 n1=1

C 0 5 6 7 7 – – 1 4

A[n2] 5 5 5 6 6 – – 1 3

[HL][n2] 6 5 6 7 7 – – 1 3

[XY][n2] 7 6 7 8 8 – – 2 4

[m8][n2] 7 6 7 8 8 – – 2 4

[HL+][n2] – – – – – – – – –

[HL–][n2] – – – – – – – – –

Chapter 7

Control Statements
This chapter explains the control statements that control program flow.

Chapter 7, Control Statements

7-1

7.1 Bit Expressions
Bit expressions are used for determining conditions of flow control statements. Bit expressions
have values of 0 or 1. A flow control statement’s condition is judged true when the bit expression
value is 1. Conversely, it is judged false when the value is 0.

Bit expressions cannot be coded by themselves. They are always used as part of control statements.

7.1.1 Structural Elements Of Bit Expressions

The following bit data objects are bit expressions.

C
A[n2]
[HL][n2]
[XY][n2]
[n8][n2]

If the corresponding bit is set to 1, then the bit expression will have the value 1. If reset, then the
bit expression will have the value 0.

7.1.2 SKIP And NOSKIP Operators

Use of a SKIP or NOSKIP operator on a native CPU instruction (basic instruction), SASM instruc-
tion, B directive, or BCAL directive will form a bit expression.

■ Syntax ■

SKIP instruction
NOSKIP instruction

■ Function ■

The SKIP operator returns the value 1 if execution of the instruction would cause the next instruc-
tion to be skipped. It returns the value 0 if the next instruction would not be skipped.

The NOSKIP operator, opposite to the SKIP operator, returns the value 0 if the next instruction
would be skipped, and the value 1 if it would not.

The SKIP operator can be omitted. When omitted, instruction must be enclosed in parentheses as
follows.

(instruction)

Chapter 7, Control Statements

7-2

■ Example ■

NOSKIP INL This returns 0 if execution of INL would generate an overflow.
Otherwise this returns 1.

SKIP HL == 3 This returns 1 if HL equals 3. It returns 0 if they are not equal.
([HL] > 0) This returns 1 if [HL] is greater than 0. Otherwise this returns

0.

7.1.3 Operators Permitted In Bit Expressions

The logical complement operator ‘!’ can be used on bit expressions. This operator returns 0 if the
bit expression is 1, and returns 1 if the bit expression is 0.

■ Syntax ■

! bit_expression

The bit expression can also be enclosed in parentheses as needed.

■ Syntax ■

(bit_expression)

Parentheses are mainly used to make the expressions easier to read.

■ Example ■

!(SKIP HL == 3)

Chapter 7, Control Statements

7-3

7.2 IF-ELSE-ELSEIF Statements

■ Syntax ■

IF bit_expression
.
.
.

[ELSEIF bit_expression]
.
.
.

[ELSE]
.
.
.

ENDI

■ Function ■

This series of statements controls which statement block will be executed by evaluating the bit
expressions.

ELSEIF and ELSE can be omitted, but IF and ENDI are required. Multiple ELSEIFs can be coded.

If the bit expression after IF is true, then the statement block between IF and ELSEIF (or ELSE if
there is no ELSEIF) will be executed. Execution then continues from the statement after ENDI.

If the bit expression after IF is false, then the bit expressions after each ELSEIF will be evaluated in
order. If one is true, then its following statement block will be executed. If there is no bit expres-
sion that is true, then the statement block after ELSE will be executed.

■ Example 1 ■

IF (SKIP A[0] == 1)
[HALT][0] = 1

ENDI

If the least significant bit of register A is 1, then [HALT][0]=1 will be executed. If it is not 1, then
no action will be taken.

Chapter 7, Control Statements

7-4

■ Example 2 ■

IF (SKIP BYTE[] == BA)
A = 1
RTS

ELSE
A = 2
RTS

ENDI

If BYTE[HL] equal the register pair BA, then A=1 and RTS will be executed. If not equal, then
A=2 and RTS will be executed.

■ Example 3 ■

IF (SKIP BYTE[] == 0)
RT

ELSEIF (NOSKIP BCAL CHK_1HZ)
A = 0

ELSE
DEC_BCD_2N()

ENDI

If BYTE[HL] equals 0, then RT will be executed. If not equal, and if the execution of BCAL
CHK_1HZ would not cause the next instruction to be skipped, then A=0 will be executed. If it
would cause the next instruction to be skipped, then the macro DEC_BCD_2N() will be executed.

Chapter 7, Control Statements

7-5

7.3 WHILE Statements

■ Syntax ■

WHILE bit_expression
.
.
.

ENDW

■ Function ■

The WHILE statement causes the statement block between WHILE and ENDW to be repeatedly
executed while the bit expression is true. The WHILE statement differs from the REPEAT-UNTIL
statements (described later) in that the condition is checked before entering the first iteration.
Therefore, if the bit expression is false at the start, then the control will exit the WHILE statement
block without executing the statements even once.

■ Example ■

WHILE (NOSKIP HL--)
[] = 0

ENDW

While HL is decremented, and until a borrow is generated, [HL]=0 will be executed.

Chapter 7, Control Statements

7-6

7.4 REPEAT-UNTIL Statements

■ Syntax ■

REPEAT
.
.
.

UNTIL bit_expression

■ Function ■

The REPEAT-UNTIL statements cause the statement block between REPEAT and UNTIL to be
repeatedly executed while the bit expression is true. The REPEAT-UNTIL statements differ from
the WHILE statement in that the statement block is executed once before the condition is checked.
Therefore, even if the bit expression is false at the start, the REPEAT-UNTIL statement block will
be executed once.

■ Example ■

REPEAT
LMTB bnk STAGE_TABLE
XY++
L += 2

UNTIL (SKIP L != low GATE_GOL_NO_DATA + 2)

First, the statement block between REPEAT and UNTIL is executed. Then if register L is not equal
to constant expression “low GATE_GOL_GO_DATA + 2”, until it becomes true the same state-
ment block will be repeatedly executed.

Chapter 7, Control Statements

7-7

7.5 SWITCH-CASE Statements

■ Syntax ■

SWITCH obj
CASE constant_expression

.

.

.
[CASE constant_expression]

.

.

.
[DEFAULT]

.

.

.
ENDS

The obj can be one of the following nibble data objects.

A B L H Y X [HL] [XY] [n8] constant_expression

■ Function ■

The SWITCH statement passes control to one of the statement blocks depending on the value of
obj.

The value of obj is compared with the constant expression after each CASE. The statements after
the matching CASE will be executed, and then control will exit the entire SWITCH block.

When no matching CASE, the statements after DEFAULT will be executed and exit the SWITCH
block. If DEFAULT is not defined, then no statement is executed and exit the SWITCH block.

Multiple statements can be defined after each CASE, and also they can be omitted.

Chapter 7, Control Statements

7-8

■ Example ■

SWITCH[SLOPE_DATA]
CASE1

BYTE[WORK] = 70H
CASE2

BYTE[WORK] = 0AAH
CASE3

BYTE[WORK] = 077H
DEFAULT

BYTE[WORK] = 0A0H
ENDS

The value assigned to BYTE[WORK] will be determined by the value of [SLOPE_DATA]. The
value assigned to BYTE[WORK] will be 70H if [SLOPE_DATA] is 1, 0AAH if 2, 077H if 3, and
0A0H for all other values.

Chapter 7, Control Statements

7-9

7.6 FOR Statements

■ Syntax ■

FOR obj = constant_expression_1 , constant_expression_2
.
.
.

ENDF

The obj can be one of the following nibble data objects.

A B L H Y X [HL] [XY] [n8]

■ Function ■

The FOR statement initializes obj to constant_expression_1, and then until obj becomes equal to
constant_expression_2 will repeatedly increment obj and execute the statement block between FOR
and ENDF. If obj overflows before it becomes equal to constant_expression_2, then control will
exit the FOR statement block at that point.

■ Example ■

FOR H = high BALL_1_DATA,(high BALL_4_DATA) + 1
L = low BALL_DATA
IF (SKIP[][1] == 1)

A = 0
[HL+] = A
[HL+] = A
[HL+] = A
[] = A

ENDI
ENDF

Starting from “high BALL_1_DATA,” the value of H is incremented, and until it equals “(high
BALL_4_DATA)+1” the statement block between FOR and ENDF will be repeatedly executed.

Chapter 7, Control Statements

7-10

7.7 BREAK Statements

■ Syntax ■

BREAK

■ Function ■

The BREAK statement is used in SWITCH statement blocks and iteration blocks of FOR, WHILE,
and REPEAT statements. When a BREAK statement is executed, control will exit the innermost
statement block. Control will pass to the next statement after the exited control block or SWITCH
block.

■ Example ■

WHILE (NOSKIP X == 0)
INC_BCD_2N()
IF (SKIP BYTE[] == 19H)

BREAK
ENDI

ENDW

If BYTE[HL] is equal to 19H, then control will exit the WHILE statement’s iteration block, regard-
less of WHILE statement’s iteration condition.

Chapter 7, Control Statements

7-11

7.8 CONTINUE Statements

■ Syntax ■

CONTINUE

■ Function ■

The CONTINUE statement is used in iteration blocks of FOR, WHILE, and REPEAT statements.
When a CONTINUE statement is executed, control will pass to the end of the innermost iteration
block without executing the statements after CONTINUE. Accordingly, immediately after a CON-
TINUE statement is executed, the iteration condition will be checked.

■ Example ■

WHILE (NOSKIP L--)
IF (SKIP BYTE[] == 19H)

CONTINUE
ENDI
INC_BCD_2N()

ENDW

If BYTE[HL] is equal to 19H, then the conditional check L–– will be executed without executing
the macro INC_BCD_2N().

Chapter 7, Control Statements

7-12

7.9 Optimization Of Bit Expressions
Some bit expressions have the same meaning although they are different in syntax. An example is
shown below.

(1) SKIP A == 1

(2) NOSKIP A != 1

When these bit expressions are used in IF statements, ELSEIF statements, WHILE statements, or
UNTIL statements, the expansion of both will actually be the expansion of (1), which is more effi-
cient. Thus, following two IF statements will generate identical code.

(1) IF SKIP A == 1

(2) IF NOSKIP A != 1

These kinds of bit expressions will be optimized in the following cases.

Optimization of Bit Expression

Type Bit Expression Being Optimized Optimized Bit Expression

Nibble/Byte Equivalence SKIP obj1 != obj2 NOSKIP obj1 == obj2

Comparisons NOSKIP obj1 != obj2 SKIP obj1 == obj2

Bit Equivalence Comparisons SKIP obj1 == 0 NOSKIP obj1 != 0

NOSKIP obj1 == 0 SKIP obj1 != 0

SKIP obj1 != 1 NOSKIP obj1 == 1

NOSKIP obj1 != 1 SKIP obj1 == 1

For details on obj1 and obj2, refer to Chapter 6, “SASM Instruction Details.”

Optimization will also be performed if the SKIP operator is omitted or if a logical negation operator
(!) is used instead of the NOSKIP operator.

Chapter 8

Error Messages
This chapter describes the SASM64K error messages.

Chapter 8, Error Messages

8-1

8.1 Syntax Errors
Syntax errors generated during analysis of the source file will cause error messages to be output to
the console or error file.

The error codes, error messages, and their meanings are listed below.

Code Error Message

E0 bad character xx (hex)
There is an illegal character in the source file.

E2 bad operand
Operand syntax is incorrect.

E3 bad range
The range of values coded for an operand is incorrect.

E4 bad syntax
This error occurs at the start of analysis. An instruction could not be recognized.

E5 bad const
Coding of a constant is incorrect.

E6 bad location
The location value is not in the permitted range.

E7 code segment only
This instruction is permitted only in the code segment.

E8 divide by zero
There is a division by zero within a constant expression.

E11 mnemonic not allowed.
The mnemonic is not allowed.

E13 name required
A name is required.

E16 redefinition xxxxxx
The symbol xxxxxx has been redefined.

E19 undefined xxxxxx
There is no definition for the symbol xxxxxx.

Chapter 8, Error Messages

8-2

Code Error Message

E26 absolute expression required
The operand must be a constant expression (resolvable during assembly). This error
is occurred when the operand is not a constant expression in many of the directives.

E27 B/BCAL operand must be label
The operand of a B or BCAL directive must be a label in the code segment.

E28 missing ‘
A single quotation mark (‘) is missing.

E29 missing “
A double quotation mark (“) is missing.

E30 missing ENDM
An ENDM is missing.

E32 missing)
A right parenthesis is missing.

E33 cannot use macro name
The macro name cannot be used.

E34 cannot use bit expression
A bit expression cannot be coded here.

E36 missing statement xxxxxx
The statement xxxxxx is missing.

E37 macro definition not found
A macro call was made without a macro definition.

E38 not macro name
This name is not a macro name.

E43 cannot use this object
This instruction cannot use this data object.

E44 parameters mismatch
Number of macro parameters is not correct.

Chapter 8, Error Messages

8-3

8.2 Warnings
Warnings are generated for code that does not have illegal syntax, but for which the assembly
results might not be trusted. The output format to the console (error file) is the same as for syntax
errors.

The warning codes, warning messages, and their meanings are listed below.

Code Warning Message

W0 illegal access to SFR
This access to the SFR area is invalid. This warning occurs is such cases as when a
write is made to a read-only SFR or when a byte access is made to an SFR that does
not allow byte accesses.

W1 cannot access to high nibble of SFR byte
This is a byte access to the high nibble of an SFR that allows byte accesses.

W2 do not put out code
This SASM instruction will not output object code.

W3 overlap segment
The code or data segment overlaps. This warning is output when the value specified
with an ORG directive is smaller than the location counter.

Chapter 8, Error Messages

8-4

8.3 Fatal Errors
Fatal errors occur during SASM64K execution. When a fatal error occurs, SASM64K suspends
processing , outputs a message to the console, and forcibly terminates.

Code Error Message

F7 file not found
The source file was not found.

F12 memory is not enough
There is not enough memory to continue processing. The cause of this error is prob-
ably that too many symbols have been defined in the source program. If you have
any TSR programs resident, you should remove them. If you have been specifying
the REF option or SYM option, then remove those specifications. If the error still
occurs after these measures, then unfortunately SASM64K cannot process your pro-
gram. Reduce the number of symbols to fix this error.

F13 line overflow
The number of source statements exceeds 65,535.

F16 error(s) found in DCL file
One or more syntax errors exists in the DCL file. This means that assembler results
cannot be guaranteed, so the assembler will output this message and terminate pro-
cessing. This error will not occur as long as you use original DCL files provided by
Oki Electric.

F17 TYPE directive required
A TYPE directive is required.

F18 duplicate TYPE directive
Duplicate TYPE directives are coded.

F19 !branch table overflow!
The branch table has overflowed. This error occurs if there are too many B, BCAL,
ORG, and NSE directives coded in the source program.

F20 too many errors
There are too many errors.

F21 too many include or macro nesting levels
Include or macro nesting levels are too deep.

F22 expression too long
A constant expression is too long.

Chapter 8, Error Messages

8-5

Code Error Message

F23 exist undefined symbol
There are one or more undefined symbols in the source file.

F24 disk is full ?
The disk is full.

Chapter 8, Error Messages

8-6

Chapter 9

Output Files
SASM64K creates four files as a result of assembly (object file, print file, error file, and assembly
source file). This chapter describes these files.

Chapter 9, Output Files

9-1

9.1 Object File
The object file’s contents are object code information and debug information.

Object code information is represented in Intel HEX format. Debug information is in the format
used by SID64X and SID64K.

The file to which object code information and debug information are output has the name of the
source program file with the extension “.HEX.” (For example, if SAMPLE.ASM is assembled,
then an object file called SAMPLE.HEX will be created.)

If there is one or more syntax errors in the source program, then an object file will not be created.

■ Attention ■

Debug information, used by SID64X and SID64K, is output if the /D option is specified when the
assembler is started.

9.1.1 Object Code Information

Object code information is represented in Intel HEX format.

As shown in Figure 9-1, Intel HEX format is configured from two types of records: data records
and an end-of-file record.

Figure 9-1. Intel HEX Format

Data records contain object code located in code space. The end-of-file record indicates the end of
the file.

The format of each record is as follows.

Data record

End-of-file record

repeated

Chapter 9, Output Files

9-2

■ Data Record

Field Description

(1) The character “:”.

(2) Number of bytes of object code stored in data field.

(3) Address where object code stored at start of data field is to be loaded.

(4) Fixed as “00”. Indicates a data record.

(5) Field containing object code.

(6) Checksum.

■ End-of-File Record

Field Description

(1) The character “:”.

(2) Fixed as “00”.

(3) Fixed as “0000”.

(4) Fixed as “01”. Indicates an end-of-file record.

(5) Fixed as “FF”.

 : 1 0 0 0 0 0 0 0 B E A 7 B E A 8 1 1 1 7 3 A F F 2 F 7 E A 8 4 E 9 2 0 3 0 5 5 3 3 4

(1) (2) (3) (4) (5) (6)

 : 0 0 0 0 0 0 0 1 F F

(1) (2) (3) (4) (5)

Chapter 9, Output Files

9-3

9.1.2 Debug Information

Debug information, used by SID64X and SID64K, is output if the /D option is specified when the
assembler is started.

As shown in Figure 9-2, debug information is configured from debug symbol records and end-of-
debug information records.

Figure 9-2. Debug Information Format

Debug symbol records contain information about user-defined symbols. The end-of-debug infor-
mation record indicates the end of debug information.

The format of debug information independs on the format of object code information. The format
of each record is as follows.

■ Debug Symbol Record

Field Description

(1) The character “0”. Indicates a debug symbol record.

(2) User-defined symbol.

(3) Value of the symbol.

(4) Symbol type. Registered symbols are classified in the following types depending on how they
were defined.

C: Symbol is allocated in CODE space.

D: Symbol is allocated in DATA space.

N: Name was defined with EQU or SET directive.

Debug symbol record

End-of-debug information record

repeated

 0 D E B U G S Y M 1 0 H C

(1) (2) (3) (4)

Chapter 9, Output Files

9-4

■ End-of-Debug Information Record

This record indicates the end of debug information. It is the single character “$” (24H).

$

Chapter 9, Output Files

9-5

9.2 Print File
The print file is a variable length sequential file consisting of one record up to a carriage return.
The file output to disk has the name of the source program file with the extension “.PRN.”

<<SASM64K>> Structured-Macro-Assembler, Ver.1.00

page :1 (1)

file :sample.ASM (2)

date :94 03/15 Tue.[18:19] (3)

title :"Sample program for sasm64k" (4)

Loc Code Statement Line Source (9)

(5) (6) (7) (8)

******************** sample.ASM ******************** (10)

1:TYPE(M64152)

2:TITLE "Sample program for

sasm64k"

3:

4:INCLUDE(SYMBOL.DEF)

******************** SYMBOL1.DEF ********************

1:NOLIST

******************** sample.asm ********************

5:

6:DEFIN E RESET_DATA 0

7:

8: ORG 100H

0100 ORG 0100H

9:START:

0100 START:

10: HL = RESET_DATA

0100 50 00 LHLI 00H

11: WHILE(NOSKIP X == 0)

0102 ?00000:

0102 43 LAX

0103 BE 40 CAI 00H

0105 C7 B ?00002

0106 D0 B ?00001

Chapter 9, Output Files

9-6

Field Description

(1) Page number.

(2) Source file name.

(3) Date given by DATE directive. If no DATE directive was used, then this field will display the
current date from the operating system.

(4) Title given by TITLE directive. If no TITLE directive was used, then this field will display
nothing.

(5) Location counter value (4-digit hexadecimal).

(6) Object code.

(7) Code segment statement.

This field displays instructions, DB/DW/B/BCAL directives, label definitions in the code segment,
and a converted form of NSE/ORG/DS directives. The calculated values of constant expressions
are displayed.

(8) Source file line number.

(9) Source statement.

(10) Source file name.

Chapter 9, Output Files

9-7

9.3 Cross-Reference List
The cross-reference list is a listing of both symbol information and a reference table. It shows
where each symbol is defined and referenced.

Symbols are listed in alphabetic order. Symbols coded in the source program with lower-case let-
ters will be output converted to all upper-case letters.

The cross-reference list is output following the assembly list.

Field Description

(1) Symbol.

(2) File name and line number where symbol was defined (4-digit decimal).

(3) File name and line number where symbol was referenced (decimal).

---- cross reference list ----

BUFFER....................sample.ASM(10)

MAIN......................sample.ASM(17) (2)

(1) sample.ASM(20) (3)

RAM0......................sample.ASM(6)

ROM0......................sample.ASM(7)

sample.ASM(13)

VAL1......................sample.ASM(4)

VAL2......................sample.ASM(5)

Chapter 9, Output Files

9-8

9.4 Symbol List
The symbol list is a listing of the symbol table contents. It provides information about the symbols
that appear in the program.

The symbol list has the following format.

Field Description

(1) Symbol.

(2) Directive that defined the symbol. However, LABEL will be displayed for labels.

(3) Symbol type. Registered symbols are classified in the following types depending on how they
were defined.

CODE: Symbol is allocated in CODE space.

DATA: Symbol is allocated in DATA space.

NUM: Name was defined with EQU or SET directive.

(4) Symbol value (4-digit hexadecimal).

---- symbol information ----

name type atr value

(1) (2) (3) (4)

BUFFER.................. LABEL DATA 0000H

MAIN.................... LABEL CODE 0100H

RAM0.................... DATA DATA 0006H

ROM0.................... CODE CODE 0004H

VAL1.................... EQU NUM 0001H

VAL2.................... EQU NUM 0000H

Chapter 9, Output Files

9-9

9.5 Error File
The error file shows the statements that generated errors during assembly and the error messages.

First the error message is displayed. For pass 1, the source statement is then displayed. For pass 2
and part of pass 1, the source statement will not be displayed.

Refer to chapter 8, “Error Messages,” regarding the meanings of error messages. Error message
output format is as follows.

Field Description

(1) Source file name.

(2) Line number in source file.

(3) Error number.

(4) Error message.

(5) Source statement.

(1) (2) (3) (4)

SAMPLE.ASM(187):Error:E7:code segment only

B ABC (5)

Chapter 9, Output Files

9-10

9.6 Assembly Source File
The assembly source file is the SASM64K source file converted to a source file that can be assem-
bled by ASM64K.

The assembly source file can be assembled by ASM64K Ver. 1.01 or higher, or by SASM64K
itself. Be sure that the output file name is not a duplicate of the input file name when assembling
with SASM64K.

An assembly source file output example is shown below.

Chapter 9, Output Files

9-11

;<<SASM64K>> Structured-Macro-Assembler, Ver.1.00

;file :sample.asm

TYPE(M64152)

TITLE "Sample program for sasm64k"

;sample.asm(4): INCLUDE(SYMBOL.DEF)

DSEG

OPMODE_DATA DATA 2

CSEG

ORG 80H

PLAY_SOUND_5:

;sample.asm(6): DEFINE RESET_DATA 0

;sample.asm(8): MACRO INC_BCD_2N()

;sample.asm(9): BA = 7

;sample.asm(10): [] == 9H

;sample.asm(11): A = 1

;sample.asm(12): BA += BYTE[]

;sample.asm(13): BYTE[] = BA

;sample.asm(14): ENDM

ORG 100H

START:

;sample.asm(18): HL = RESET_DATA

LBAI 0

LLAB

;sample.asm(19): WHILE (NOSKIP X == 0)

?00000:

LAH

CAI 0

B ?00002

B ?00001

?00002:

Chapter 9, Output Files

9-12

Chapter 10

Sample Program
This chapter describes a sample application program using SASM64K.

Chapter 10, Sample Program

10-1

10.1 Sample Program Specifications
This chapter introduces an application program for SASM64K. If you use all or part of this sample
program, be sure to take into account other conditions and debug it properly.

10.1.1 Function of Sample Program

The sample program described in this chapter is a timer program that counts from 00:00
(minutes;seconds) to 99:59 in one-second increments, and displays the time on an LCD display.

10.1.2 Program Specifications

Minutes and seconds data are stored in two bytes in bank 7 of the data memory area (Figure 10-1).
The COM1-4 and SEG0-7 LCD driver outputs are used for the LCD display (Figure 10-2).

To count time, the program checks the 1-Hz interrupt request flag in bank 0 of the data memory
area (Figure 10-3). If the flag is 1, then the seconds data will be incremented in BCD (binary-coded
decimal). If the seconds data has reached 60, then its carry will increment the minutes data in
BCD.

Figure 10-1. Seconds Data And Minutes Data

MIN_DATA

SEC_DATA

7FFH
RAM

764H

762H

760H

Bank 7

Chapter 10, Sample Program

10-2

Figure 10-2 Correspondence Of LCD Driver Outputs And Seconds/Minutes Display

Figure 10-3 1-Hz Interrupt Request Flag

SEG7 SEG6

COM1

COM2

COM3

COM4

SEG5 SEG4 SEG3 SEG2 SEG1 SEG0

Minute Display Second Display

IRQ3

SFR

100H

80H

3FH

00H

Bank 0

Minutes Display Seconds Display

Chapter 10, Sample Program

10-3

10.2 File Configuration
The sample program is configured from the following 7 files.

(1) MAIN.ASM
(2) SFRSBL.DEF
(3) DATSBL.DEF
(4) MACRO.DEF
(5) LCD.DEF
(6) SUB.DEF
(7) TABLE.DEF

Files (2) to (7) are all included in MAIN.ASM (Figure 10-4).

Each file is described below.

(1) MAIN.ASM

MAIN.ASM is the core program for processing. It specifies the target device with a TYPE
directive, includes the sub-files, and codes the main procedure.

Lines 17-38 use a WHILE statement to construct an infinite loop that increments and displays
the timer. Lines 40-50 are the display routine. The main procedure is coded using structured
programming, one of SASM64K's feature.

(2) SFRSBL.DEF

SFRSBL.DEF defines SFR symbols.

(3) DATSBL.DEF

DATSBL.DEF defines data symbols.

(4) MACRO.DEF

MACRO.DEF defines macros. The user may find it convenient to collect macros in a library.
The ability to define local labels eliminates the worry about defining the same label name
twice.

(5) LCD.DEF

LCD.DEF defines LCD definition data.

Chapter 10, Sample Program

10-4

(6) SUB.DEF

SUB.DEF defines subroutines. All subroutines are defined using the SUB directive, so if this
file is included at the end of the MAIN.ASM, then only the subroutines actually referenced will
be expanded. The user may find it convenient to collect subroutines in a library. The ability to
define local labels eliminates the worry about defining the same label name twice.

(7) TABLE.DEF

TABLE.DEF defines table data.

Figure 10-4 Program File Configuration

MAIN.ASM
SFRSBL.DEF

DATSBL.DEF

MACRO.DEF

LCD.DEF

SUB.DEF

TABLE.DEF

.

.

.
INCLUDE(SFRSBL.DEF)
INCLUDE(DATSBL.DEF)
INCLUDE(MACRO.DEF)

.

.

.

.

.

.

.
INCLUDE(LCD.DEF)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
INCLUDE(SUB.DEF)
INCLUDE(TABLE.DEF)
END

DEFINE Q1HZ [IRQ]
DEFINE Q16HZ [IR

DESEG
ORG 760H

MACRO BANK(_A)
LBS0I _A

ENDM

X1SEC_A EQU ((DS
X1SEC_B EQU ((DS
X1SEC_C EQU ((DS

SUB STRCLR LOCA
LABEL1:

AIS 0FH

NSE
FIG_TABLE:
DB 0011_1111B

.

.

.

.

.

.

.

.

.

.

Chapter 10, Sample Program

10-5

MAIN.ASM

1: ;**
2: ;****** SASM64K Sample Program *****
3: ;****** for MSM64153 *****
4: ;****** *****
5: ;****** Copyright 1994 OKI ELECTRIC INDUSTRY Co.,LTD. *****
6: ;**
7: TYPE (M64153)
8: TITLE "SASM64K Sample Program"
9: INCLUDE(SFRSBL.DEF)

10: INCLUDE(DATSBL.DEF)
11: INCLUDE(MACRO.DEF)
12: CSEG
13: ORG 0H
14: GOTO MAIN
15: INCLUDE(LCD.DEF)
16: ORG 0E0H
17: MAIN:
18: RBE
19: RBC
20: BANK(7)
21: BYTE[offset SEC_DATA] = 00H
22: BYTE[offset MIN_DATA] = 00H
23: BCAL DSP_LCD
24: WHILE(1)
25: BANK(0)
26: IF(Q1HZ)
27: Q1HZ = 0
28: BANK(7)
29: HL = offset SEC_DATA
30: BCAL BYTEINC_BCD
31: IF(BYTE[]==60H)
32: BYTE[] = 00H
33: L = low MIN_DATA
34: BCAL BYTEINC_BCD
35: ENDI
36: BCAL DSP_LCD
37: ENDI
38: ENDW
39: DSP_LCD:
40: BANK(0)
41: STRN = 0
42: BANK(7)
43: DSPR_SET(high FIG_TABLE,[offset SEC_DATA] ,DSPR2)
44: DSPR_SET(X ,[offset SEC_DATA+1],DSPR4)
45: DSPR_SET(X ,[offset MIN_DATA] ,DSPR6)
46: DSPR_SET(X ,[offset MIN_DATA+1],DSPR8)
47: BANK(0)
48: STRN = 1
49: BANK(7)
50: RT
51:
52: INCLUDE(SUB.DEF)
53: INCLUDE(TABLE.DEF)
54: END

Chapter 10, Sample Program

10-6

SFRSBL.DEF

DATSBL.DEF

MACRO.DEF

1: DSEG
2: ORG 760H
3: SEC_DATA: DS 2
4: MIN_DATA: DS 2

1: MACRO BANK(_A)
2: LBS0I _A
3: ENDM
4:
5: MACRO DSPR_SET(_A,_B,_C)
6: X = _A
7: Y = _B
8: HL = _C
9: BANK(0)

10: LMTB bnk FIG_TABLE
11: BANK(7)
12: ENDM

1: DEFINE Q1HZ [IRQ3][1]
2: DEFINE Q16HZ [IRQ2][3]
3: DEFINE Q32HZ [IRQ2][2]
4: DEFINE Q128HZ [IRQ2][1]
5: DEFINE E1HZ [IE3][1]
6: DEFINE E16HZ [IE2][3]
7: DEFINE E32HZ [IE2][2]
8: DEFINE E128HZ [IE2][1]
9: DEFINE DTRN1 [DSPCON0][3]

10: DEFINE DTRN0 [DSPCON0][2]
11: DEFINE ONOFF [DSPCON0][1]
12: DEFINE DUTY [DSPCON0][0]
13: DEFINE HTRN [DSPCON1][1]
14: DEFINE STRN [DSPCON1][0]

Chapter 10, Sample Program

10-7

LCD.DEF

1: X1SEC_A EQU ((DSPR2-40H)<<2)+0
2: X1SEC_B EQU ((DSPR2-40H)<<2)+1
3: X1SEC_C EQU ((DSPR2-40H)<<2)+2
4: X1SEC_D EQU ((DSPR2-40H)<<2)+3
5: X1SEC_E EQU ((DSPR3-40H)<<2)+0
6: X1SEC_F EQU ((DSPR3-40H)<<2)+1
7: X1SEC_G EQU ((DSPR3-40H)<<2)+2
8: X10SEC_A EQU ((DSPR4-40H)<<2)+0
9: X10SEC_B EQU ((DSPR4-40H)<<2)+1

10: X10SEC_C EQU ((DSPR4-40H)<<2)+2
11: X10SEC_D EQU ((DSPR4-40H)<<2)+3
12: X10SEC_E EQU ((DSPR5-40H)<<2)+0
13: X10SEC_F EQU ((DSPR5-40H)<<2)+1
14: X10SEC_G EQU ((DSPR5-40H)<<2)+2
15: X1MIN_A EQU ((DSPR6-40H)<<2)+0
16: X1MIN_B EQU ((DSPR6-40H)<<2)+1
17: X1MIN_C EQU ((DSPR6-40H)<<2)+2
18: X1MIN_D EQU ((DSPR6-40H)<<2)+3
19: X1MIN_E EQU ((DSPR7-40H)<<2)+0
20: X1MIN_F EQU ((DSPR7-40H)<<2)+1
21: X1MIN_G EQU ((DSPR7-40H)<<2)+2
22: X10MIN_A EQU ((DSPR8-40H)<<2)+0
23: X10MIN_B EQU ((DSPR8-40H)<<2)+1
24: X10MIN_C EQU ((DSPR8-40H)<<2)+2
25: X10MIN_D EQU ((DSPR8-40H)<<2)+3
26: X10MIN_E EQU ((DSPR9-40H)<<2)+0
27: X10MIN_F EQU ((DSPR9-40H)<<2)+1
28: X10MIN_G EQU ((DSPR9-40H)<<2)+2
29: ORG 50H
30: DB 00 ,X10MIN_E ,X10MIN_G ,X10MIN_F
31: DB X10MIN_D ,X10MIN_C ,X10MIN_B ,X10MIN_A
32: DB 00 ,X1MIN_E ,X1MIN_G ,X1MIN_F
33: DB X1MIN_D ,X1MIN_C ,X1MIN_B ,X1MIN_A
34: DB 00 ,X10SEC_E ,X10SEC_G ,X10SEC_F
35: DB X10SEC_D ,X10SEC_C ,X10SEC_B ,X10SEC_A
36: DB 00 ,X1SEC_E ,X1SEC_G ,X1SEC_F
37: DB X1SEC_D ,X1SEC_C ,X1SEC_B ,X1SEC_A
38: DB 0FFH

Chapter 10, Sample Program

10-8

SUB.DEF

TABLE.DEF

1: SUB STRCLR LOCAL(LABEL1)
2: LABEL1:
3: AIS 0FH
4: RT
5: [] = 0H
6: NS,HL ++
7: GOTO LABEL1
8: ENDSUB
9:

10: SUB BYTEINC_BCD
11: IF(BYTE[]==99H)
12: BYTE[] = 00H
13: ELSEIF([]==9H)
14: BYTE[] += 07H
15: ELSE
16: NS,[] ++
17: ENDI
18: RT
19: ENDSUB
20:
21: SUB BYTEDEC_BCD
22: IF(BYTE[]==00H)
23: BYTE[] = 99H
24: ELSEIF([]==0H)
25: BYTE[] -= 07H
26: ELSE
27: [] --
28: ENDI
29: RT
30: ENDSUB

1: NSE
2: FIG_TABLE:
3: DB 0011_1111B ;0
4: DB 0000_0110B ;1
5: DB 0101_1011B ;2
6: DB 0100_1111B ;3
7: DB 0110_0110B ;4
8: DB 0110_1101B ;5
9: DB 0111_1101B ;6

10: DB 0000_0111B ;7
11: DB 0111_1111B ;8
12: DB 0110_1111B ;9

Appendices
• Basic Instructions
• Directives
• Operators
• Spscial Assembler Symbols
• Control Statements
• Data Address Symbols

Appendices

App.-1

Basic Instructions
ADC ADCB ADCS ADS ADSB AIS AND

ANDI CAB CAI CAL LCAL CAM CAMB

CAMD CLI CMA CMI CZP DCA DCH

DCL DCM DCMD DCX DCY EOR EORI

INA INH INL INM INMD INX INY

JA JCP JM JP LJP LAB LAH

LAI LAL LALB LAM LAMB LAMD LAMDB

LAMM LAM+ LAM– LAX LAY LAYB LBA

LBAI LBS0I LBS1I LHA LHI LHLI LLA

LLAB LLI LMA LMAB LMAD LMADB LMA+

LMA– LMBI LMI LMTB LXA LXI LXYI

LYA LYAB LYI NOP OR ORI POP

PUSH RAL RAR RBC RBE RC RMB

RMBD RT RTI RTS SBC SBE SC

SMB SMBD SUBC SUBCB SUBCS SUBS SUBSB

TAB TC TMB TMBD XAB XAM XAMB

XAMD XAMDB XAMM XAM+ XAM–

Directives
B BCAL CODE CSEG DATA

DATE DB DEFINE DS DSEG

DW END ENDM ENDSUB EQU

ERR GOTO INCLUDE LIST LOCAL

MACRO NOERR NOLIST NOOBJ NOPRN

NOREF NOSYM NSE OBJ ORG

PAGE PRN REF REFER SET

SUB SYM TITLE TYPE

Appendices

App.-2

Operators
* / % + - << >>

& | ̂ >= > < <=

~ ! = = != & & | | <>

+ = - = & = |= ^= OFFSET BNK

LOW HIGH

Special Assembler Symbols
A B BA BSR BYTE

C H HL L NIBBLE

NOSKIP NS SKIP X XY

Y @ $

Control Statements
BREAK CASE CONTINUE DEFAULT

FOR IF ELSE ELSEIF

ENDF ENDI ENDS ENDW

REPEAT SWITCH WHILE UNTIL

Data Address Symbols
Refer to the following file.

● README.JPN (Japanese version)
● README.ENG (English version)

	Coverd
	Notice
	Preface
	Table of Contents
	Chapter 1 Introduction
	1.1 Functional Overview
	1.2 Sample Program
	1.3 DCL Files
	1.3.1 File Name
	1.3.2 DCL File Search
	1.3.3 DCL Instructions And File Declaration Contents
	1.3.4 Error Processing

	Chapter 2 Starting SASM64K
	2.1 Starting Methods
	2.1.1 Starting Method 1
	2.1.2 Starting Method 2

	2.2 File Specifications
	2.3 Options
	2.4 Termination Codes
	2.5 Example Of Starting SASM64K

	Chapter 3 Assembly Language Syntax
	3.1 Characters Allowed In Programs
	3.2 Structual Elements Of Source Programs
	3.2.1 Instruction Statements
	3.2.2 Directive Statements
	3.2.3 Control Statements

	3.3 Statement Format Of Basic Instructions
	3.3.1 Label Field
	3.3.2 Instruction Field And Operand Field
	3.3.3 Comment Field

	3.4 Symbols
	3.4.1 Reserved Word Symbols
	3.4.2 User Defined Symbols
	3.4.3 Location Symbol
	3.4.4 Symbol Scope And Overlapping Definitions

	3.5 Constants
	3.5.1 Integer Constants
	3.5.2 Character Constants
	3.5.3 String Constants

	3.6 Operators
	3.6.1 Arithmetic Operators
	3.6.2 Logical Operators
	3.6.3 Bitwise Logical Operators
	3.6.4 Relational Operators
	3.6.5 Other Operators
	3.6.6 Precedence

	3.7 Comments
	3.8 Address Space And Segment Types
	3.9 Data RAM Address Specifications
	3.9.1 HL Indirect Addressing Mode
	3.9.2 XY Indirect Addressing Mode
	3.9.3 Direct Addressing Mode
	3.9.4 Stack Pointer Indirect Addressing Mode

	Chapter 4 Directives
	4.1 Symbol Definitions
	4.1.1 EQU
	4.1.2 SET
	4.1.3 DATA
	4.1.4 CODE
	4.1.5 Code Example

	4.2 Memory Segment Control
	4.2.1 CSEG
	4.2.2 DSEG
	4.2.3 Code Example

	4.3 Location Counter Control
	4.3.1 ORG
	4.3.2 DS
	4.3.3 NSE
	4.3.4 Code Example

	4.4 Data Definitions
	4.4.1 DB
	4.4.2 DW
	4.4.3 Code Example

	4.5 Listing Control
	4.5.1 DATE
	4.5.2 TITLE
	4.5.3 PAGE
	4.5.4 OBJ/NOOBJ
	4.5.5 PRN/NOPRN
	4.5.6 ERR/NOERR
	4.5.7 SYM/NOSYM
	4.5.8 REF/NOREF
	4.5.9 LIST/NOLIST
	4.5.10 Code Example

	4.6 Optimization
	4.6.1 B
	4.6.2 GOTO
	4.6.3 BCAL
	4.6.4 Code Example

	4.7 Assembler Control
	4.7.1 TYPE
	4.7.2 END

	4.8 Preprocessor Directives
	4.8.1 INCLUDE
	4.8.2 DEFINE
	4.8.3 SUB
	4.8.4 REFER
	4.8.5 Macro Definitions
	4.8.6 Macro Calls

	Chapter 5 SASM Instructions
	5.1 SASM Instruction Syntax
	5.1.1 Skips
	5.1.2 Data Objects
	5.1.3 Operators
	5.1.4 Options
	5.1.5 Data Object Restrictions
	5.1.6 SASM Instruction Expansion

	Chapter 6 SASM Instruction Details
	6.1 Nibble Assignments
	6.2 Nibble Exchanges
	6.3 Nibble Equivalence Comparisons
	6.4 Nibble Greater/Less-Than Comparisons
	6.5 Nibble Additions & Subtractions
	6.6 Nibble Logical Operations
	6.7 Nibble Shifts
	6.8 Nibble Increments & Decrements
	6.9 Byte Assignments
	6.10 Byte Exchanges
	6.11 Byte Equivalence Comparisons
	6.12 Byte Greater/Less-Than Comparisons
	6.13 Byte Additions & Subtractions
	6.14 Byte Logical Operations
	6.15 Byte Shifts
	6.16 Byte Increments & Decrements
	6.17 Bit Assignments
	6.18 Bit Exchanges
	6.19 Bit Equivalence Comparisons

	Chapter 7 Control Statements
	7.1 Bit Expressions
	7.1.1 Structural Elements Of Bit Expressions
	7.1.2 SKIP And NOSKIP Operators
	7.1.3 Operators Permitted In Bit Expressions

	7.2 IF-ELSE-ELSEIF Statements
	7.3 WHILE Statements
	7.4 REPEAT-UNTIL Statements
	7.5 SWITCH-CASE Statements
	7.6 FOR Statements
	7.7 BREAK Statements
	7.8 CONTINUE Statements
	7.9 Optimization Of Bit Expressions

	Chapter 8 Error Messages
	8.1 Syntax Errors
	8.2 Warnings
	8.3 Fatal Errors

	Chapter 9 Output Files
	9.1 Object File
	9.1.1 Object Code Information
	9.1.2 Debug Information

	9.2 Print File
	9.3 Cross-Reference List
	9.4 Symbol List
	9.5 Error File
	9.6 Assembly Source File

	Chapter 10 Sample Program
	10.1 Sample Program Specifications
	10.1.1 Function of Sample Program
	10.1.2 Program Specifications

	10.2 File Configuration

	Appendices
	Basic Instructions
	Directives
	Operators
	Special Assembler Symbols
	Control Statements
	Data Address Symbols

