OKI

RTL665S
Run-Time Library Reference

Program Development Support Software

FIRST EDITION
ISSUE DATE:Mar. 1997

E2Y0002-29-62

NOTICE

1

The information contained herein can change without notice owing to product and/or
technical improvements. Before using the product, please make sure that the information
being referred to is up-to-date.

The outline of action and examples for application circuits described herein have been
chosen as an explanation for the standard action and performance of the product. When
planning to use the product, please ensure that the external conditions are reflected in the
actual circuit, assembly, and program designs.

When designing your product, please use our product below the specified maximum
ratings and within the specified operating ranges including, but not limited to, operating
voltage, power dissipation, and operating temperature.

OKI assumes no responsibility or liability whatsoever for any failure or unusual or
unexpected operation resulting from misuse, neglect, improper installation, repair,
alteration or accident, improper handling, or unusual physical or electrical stress
including, but not limited to, exposure to parameters beyond the specified
maximum ratings or operation outside the specified operating range.

Neither indemnity against nor license of athird party's industrial and intellectual property
right, etc. is granted by us in connection with the use of the product and/or the information
and drawings contained herein. No responsibility is assumed by us for any infringement of
athird party's right which may result from the use thereof.

The products listed in this document are intended for use in general electronics equipment
for commercial applications (e.g., office automation, communication equipment,
measurement equipment, consumer electronics, etc.). These products are not authorized for
use in any system or application that requires special or enhanced quality and reliability
characteristics nor in any system or application where the failure of such system or
application may result in the loss or damage of property, or death or injury to humans.
Such applications include, but are not limited to, trafficand automotive equipment, safety
devices, aerospace equipment, nuclear power control, medica equipment, and life-
support systems.

Certain products in this document may need government approval before they can be
exported to particular countries. The purchaser assumes the responsibility of determining
the legality of export of these products and will take appropriate and necessary steps at
their own expense for these.

No part of the contents contained herein may be reprinted or reproduced without our prior
permission.

MS-DOS is aregistered trademark of Microsoft Corporation.

Copyright 1997 Oki Electric Industry Co., Ltd.

TABLE OF CONTENTS

| ntroduction

The RTL6B65 RUN-TIMELIDIary ..ot st e enea 0-1
The Organization of thiSManUalccceceieieiicieieeee e 0-2
E U= ol T oD 1= o] SRS 0-3
Typographical Conventionsand TerminolOgyccccvvevveieieereniniese s 0-4

Chapter 1. Overview

1.1 RTL665Run-TimeLibrary Organizationccccoiiiieniniesessseseseeseeesese e 1-1
111 HEAEN FIlES .ottt nenas 1-1
0 T o= VA T = 1-2

1.2 Compatibility with the ANSI/ISO 9899 C Standardcccceeeveveireveeveeieeesce e 1-3

1.3 UsingtheLibrary ROULINESccccccoicieciciceeesc ettt st e 1-4
1.3.1 Setting the INCL66K Environment Variableccccceeeieivecenne e 1-4
IS 72 = oo = 4 I \\ Lo = o) o [1-4
1.3.3 The Procedure from Compilation through LinKingcccccevevevnvenienienccnecennen, 1-5

1.3.3.1 Compilation and ASSEMDBIYcccceeieiiiceceere e 1-5
1.3.3.2 Library LiNKiNG ...ccccoeoeeieeiiiicsese e e et sne st 1-5

1.4 ROIEOfF HEAUEr FIlES ..coiiiiciiieieee e 1-7
1.4.1 Inclusion of Macros, Constants, and TYPEScccecevveeerieresiesieseseesesse e seeeeeenens 1-7
1.4.2 Inclusion of Function Prototype Declarationsccccveeveveieveerecesiesieeeeennens 1-8

15 FUNCLIONS ANA MACIOScveiiiiiiniiinisieiees ettt st sttt 1-9
15.1 Differences between FUNCions and MaCrosc.ccoverevenineneseneseniee s 1-9
15.2 Calling Routines with Macro Definitions as FUNCLIONSccccevvecieviececeeennenn, 1-9

15.2.1 Removing aMacro Definition Using #undefc.ccccoevvvnienenceieeenn, 1-9
15.2.2 Enclosing the Routine Name in Parenthesesccccccovvvvcieieveceenne, 1-10

1.6 REENITANT ROULINESoeeiiieiiieiirieie ettt 1-11

1.7 Header FIl@ CONTENTS ...ocuoiiiiieiieeiereeisie ettt nes 1-13
1.7.1 Character Classification and Conversion <ctype.h>ccccoevevvinieninienesennenns 1-14
1.7.2 Error ldentification <Errno.n> ... 1-14
1.7.3 Floating Point Limits <float.h>cccocoieiciec e 1-15
1.7.4 Integer LIMitS <liMitS.h> ..ocooiiiiiiic e 1-17
1.75 Mathematical FUNCtions <Math.n> ..o 1-18
1.7.6 Globa Jump <SEtimMP.n> oo e 1-19
1.7.7 Variable Arguments <stdarg.n>c.coovciiiieic e 1-19
1.7.8 Genera Definitions <SAAEf.n> ..o 1-20
1.7.9 Input/Output Processing <stdio.h>cccviiiiiiii e 1-20
1.7.10 Genera Utilities <StAIiD.h>cocvevicce s 1-21
1.7.11 String Handling <StriNg.N>ooeiiiiiiccee e e 1-23

1.8 UsingtheRun-TimeLibrary REFErENCE ... 1-24

Chapter 2. Standard Built-1n Routines Reference

Library Referene (aphabetic order)

A0S ot e b e b e bt e b e e ebe et e abeereaheetesheebeshe e beeaeebeereents 2-1

= 0 SR 2-2

= | [OOSR 2-3

= 1= | SR 2-4

=1 VAR 2-5

(0] RSOSSN 2-6

= Lo OSSO 2-8

= o] RSO TRSURRRTURSRPP 2-10
015 7= (v o U 2-12
CAIIOC ottt ettt ettt b et b e bt et e bt eaeeebeeatesheereabe e beebe e beereenreans 2-14
o= SO 2-15
[0 SR 2-16
(o0 1= o USROS 2-17
Lo) TSROSO 2-18
(1 SRS 2-19
=101 2-20
0o TSROSO 2-21
1010 o [OOSR 2-22
BB it bbbt e b e be et she e beshe e beehe e beete e beeaeeereeareereenns 2-23
LS o TSSO 2-24
1 a0 T 1o X o) 2-25
10 = SR 2-28
JAIIS ..ottt b e et ae e bt b e be et e e be e beebeenbeebeebeereenreeneennas 2-29
L= o ST 2-30
LIV et et b et b e e be bt be et et e ebe e e e ebe e e e beeabenbeeaaeebeenreereenns 2-31
oo 2-32
oo 1 0 2-33
o) 1o 42! o 2-34
0 7= NSRS 2-37
MAIOC .. ettt ettt st e b e s e e besbe et e sbe e beess e beeaeeabeeaseereensesaeentesneesbesnnens 2-38
L101S 01010 | OSSOSO 2-40
(000001031 01 TP 2-42
(001 0003 o) PRSI 2-44
[0S 010000707 RS 2-46
001015 SR 2-48
0170 | OO 2-49
(o1 £ = (o TSROSO 2-50
10T PO PRSP 2-51
(05 o o S PO P PR 2-52
=110 OSSR RRSR 2-54
FEAIIOC ettt ettt st e st et e st e et e eb e et e ebe e b e saeebeeaeesbeeneesaeentesbeenbesbeebeereenreans 2-55
£ =100 o SR SN 2-57
£ o SR 2-58
£ T 0] o TR OO 2-59
S 11011 RSN 2-60
S0 | 1 TSP 2-65

LSS 07 | P 2-67
S | SRS 2-71
LS (o N 2-73
(o 0 01 T PSPPSR 2-75
S0 0)V PSPPSRI 2-77
S [0S o] [RSSO PPR 2-78
S 11 = o TSP 2-80
0= PSSP RPRR 2-82
S 01000 0] o TSP RPP 2-84
S 0T0¢ oSSR 2-86
S 11 0] o] OSSN 2-88
LS 1 (o0 OSSN 2-90
S L o) [PPSR 2-92
S | RSP RPRR 2-94
LS (0o SRS 2-96
1 ()ROSR 2-98
11 ()ROSR 2-101
501 (0 TP 2-103
12210 TSP 2-105
17270 0 OO SSRS 2-106
100 (011 SRR 2-107
(£ 0] < PRSPPI 2-109
01 0= ST 2-111
VN o V7= W= 1o I 7= U - A 2-112
125 o] 11 01« 2-114

Chapter3. Standard Input/Output

Routines Reference
Library Reference
101 (oSSR 31
1012 32
L 10« 33
L 10 (S 34
L 18£SR 35
LS 0= 0| SRS 3-6
[0 (o PO PRSP 3-8
01 ot = SN 39
[0 <. TSP RP PR 3-10
1410« T 311
11 Lo TP P PSRRI 3-12
010 Lo 7= 313
11 1S PP 3-14
LS o | T 3-15
(0] 07T (o PSSP PRRSP 3-17
1V 101 SR 3-19
17/ 04T ST 321
Appendix
ROULINES ACCESSING ROM ..ottt sttt sttt sa et e e e e ereenas A-1
Routinesfor Accessing ROM With POINTEr'S ..o e A-4

Addendum. Low-Level Routines

a1 oo (1Tt f o o ISP B-1
Specificationsfor LOW-Level ROULINEScccocveieieececeee et B-2
1= ST B-2
1T = ST B-3

Introduction

Introduction

The RTL665S Run-Time Library

RTL665S is a C run-time library for microcontrollers based on the OLMS-66K series nX-8/500S
CPU core. It supplies many routines frequently used in application programming. Using these rou-
tines can save much time and effort.

In principle, the library conforms to the ANSI/ISO 9899 C standard. It allows most existing user
programs written in C to be reused directly or with only minimal modification.

0-1

Introduction

The Organization of this Manual

This manual describes the RTL665S run-time library. This manual is written assuming that the read-
er isan experienced C programmer and is thoroughly familiar with the nX-8/500S CPU.

This manual consists of the following three chapters.

Chapter 1. Overview

This chapter provides an overview of the RTL665S run-time library. This chapter explains the
RTL665S library file organization, the use of the library, and the difference between macros and
functions. It also describes the functions that take pointers to code memory as arguments, and gives
an overview of the functions of the library routines.

Chapter 2. Standard Built-In Routines Reference

This chapter describes in detail the standard built-in routines of the library. It is organized alphabet-
ically by routine.

Chapter 3. Standard Input/Output Routines Reference

This chapter describes in detail the library routines that handle standard input/output. It is organized
alphabetically by routine.

0-2

Introduction

Related Documents
Refer to the following documents as required.
» CC665S User's Manual
Describes the use of the CC665S C compiler and provides the language specifications.
« MACG66K Assembler Package User's Manual

Describes the use of the software included in the MAC66K Assembler Package and provides the
language specifications for the assembly language.

 RTL665S.DOC
Provides the latest information not included in this manual.
* SPRNS500.DOC

Describes SPRNS50x.L I B, the non-floating point string conversion library.

0-3

Introduction

Typographical Conventions and Terminology

To help the reader locate, identify, and understand information easily, this manual uses visual cues
and standard text formats. The following typographical conventions are used in this guide.

Symbol Explanation

SAMPLE Messages displayed on the screen, examples of command line input, and exam-
ples of listing files to be created use this type style.

Italics Items that are written in italics are not to be entered as typed, but rather are to be

[]

{choi cel| choi ce2}

valuel to value2
Ctrl+C
PROGRAM

PROGRAM

replaced by the required information in the user input.
Items enclosed in square brackets are optional items that are entered as needed.
Three dotsin arow indicate that the preceding item may be repeated as required.

Items enclosed in curly braces ({ }) and separated by vertica bars indicate that
one of the items is to be selected and entered. Items not surrounded by square
brackets must be included exactly once in the input.

Indicates a value between valuel and value2, inclusive.
Indicates that the Ctrl key and the C key are to be pressed at the same time.

Vertically aligned dots indicate that a section of the program example has been
omitted.

Introduction

The table below lists terms used throughout this manual and their meanings.

Term M eaning

Macro A name defined by the #def i ne preprocessor directive. In this document, func-
tion-like macros (i.e. macros that take parameters) are sometimes referred to sim-
ply by the term “macro”.

Routine Both functions and function-like macros are referred to as “routines’.

Library routine

Type
Constant macro

Null character
Null string
Null terminator

Null pointer

A routine that isincluded in the RTL665S run-time library.
A namedefined using t ypedef .

A macro that takes no parameters and that always expands to the same constant
value. Constant macros are also referred to as simply “constants’ in this docu-
ment.

The character that has the ASCII code 0x00. That is, the character "\0'.
A string of length zero, that is a string whose first byte is the null character.
The null character that terminates a character string.

A pointer to the address zero. Expressed by the NULL constant macro.

Chapter 1
Overview

This chapter provides a simple description of the RTL665S run-time library, including its structure,
use, and the library routinesit provides.

Chapter 1, Overview

1.1 RTL665S Run-Time Library Organization

This section describes the files that make up the RTL665S run-time library.
The RTL665S run-time library consists of eleven header files and severd library files.
1.1.1 Header Files

Eleven header files are provided. These files are differentiated by function. These header files
include function prototype declarations, macro definitions, and type definitions.

These header files are necessary when compiling user programs. The CC665S C compiler includes
the header files specified with the #i ncl ude preprocessor directive in the source program.

The table below lists the header files and their content.

Header File Content

ctype.h Character classification and conversion
errno.h Error identifiers

float.h Floating point limit values
limits.h Integer limit values
math.h Mathematical functions
setjmp.h Global jump functions
stdarg.h Variable arguments
stddef.h Standard types and macros
stdio.h Input/output processing
stdlib.h General purpose utilities
string.h Character string operations

1-1

Chapter 1, Overview

1.1.2 Library Files

Each library file contains all the library routines. The format of the library files is the same binary
format as that of object files output by the RAS66K and RL66K programs.

Thelibrary filesare required at link time. The RL66K linker searches for the library routinesused in
the program in alibrary file, and links the program and those routines together to create an absolute
object file with the ABS extension.

Thelibrary files provided for the nX-8/500S are as follows.

Library File Memory M odel

L66KS50x.L1B RTL665S run time library full set version
R66K S50x.L1B RTL665S run time library reentrant version
SPRNS50x.LIB Non-floating point string conversion library

The small x in the library file names above varies with the memory model. The letters for the
memory models available are as follows.

Memory Model
Small memory model

Effective medium memory model
Medium memory model
Compact memory model

Effective large memory model

- X O m »n|Xx

Large memory model

When linking, specify the same memory model as that used when compiling with CC665S.

1-2

Chapter 1, Overview

1.2 Compatibility with the ANSI/ISO 9899 C
Standard

The RTL665S run-time library is basically a subset of the library specifications proposed in the
ANSI/ISO 9899 C Standard.

The header files listed below are not included in the RTL665S run-time library.

Standard Header Filesnot Supported by RTL 665S

Header File Content

assert.h Execution time condition checking
locale.h Locale setting and changing
signal.h Signal processing functions

time.h Data and time processing functions

The functions, macros, constant macros, types and their interfaces al conform to the ANSI/ISO
9899 C standard.

The RTL665S run-time library includes a few functions not stipulated in the ANSI/ISO 9899 C
standard. These origina functions are provided so that user programs can handle the independent
ROM and RAM spaces that are a feature of architecture of the nX-8/500S CPU core. For further
details, see the Appendix at the back of this manual.

1-3

Chapter 1, Overview

1.3 Using the Library Routines

This section describes the environment setup required to use the RTL665S run-time library, and the
procedures for using the library routines, from programming and compilation though linking.

1.3.1 Setting the INCL66K Environment Variable

The INCL66K environment variable setting provides the CC665S C compiler with the path for the
directory that holds the header files. The CC665S C compiler searches for the header files specified
with the #i ncl ude preprocessor directive in source files starting with the path specified by the
INCL66K environment variable.

Use the DOS SET command to set the INCL66K environment variable. The SET command has the
following syntax.

SET | NCL66K=path
m Examplem
Use the following command line when the header files are stored in the A:\66K\INCL UDE directory.
SET | NCL66K=A: \ 66K\ | NCLUDE
m Secalsom
The header file path can also be specified by using the CC665S C compiler’s /Ipath option. For
example, the path in the example above could aso be specified by using the /I option as shown
below.
CC665S / TM66589 /1 A:\ 66K\ | NCLUDE FQO. C
1.3.2 Program Notation
When using a library routine, the corresponding header file must be included in the source file. The
#i ncl ude preprocessor directive is used to include required header files. The CC665S C compiler
inserts the header files specified with the #i ncl ude preprocessor directive in the source file. Refer
to the library references of chapters 2 and beyond to determine which header file is required for a
given library routine.

m Examplelm

This example shows the use of the mentpy function. The corresponding header file for the nrem
cpy functionisstri ng. h. Therefore, the following line must be specified in the sourcefile.

#i ncl ude <string. h>

The #i ncl ude statements used to include header files can be specified in any order in the source
program.

1-4

Chapter 1, Overview

m Example2m
If both st ri ng. h and mat h. h arerequired, their inclusion can be specified either as:

#i ncl ude <string. h>
#i ncl ude <mat h. h>

or as.

#i ncl ude <mat h. h>
#i ncl ude <string. h>

There are two ways to specify the file namein the #i ncl ude preprocessor directive. Thefirstisto
enclose the file name angle brackets (< >) as shown in the examples above, and the second is to
enclose the name in double quotation marks ("). Always use angle brackets to include RTL665S
header files. See the “CC665S User's Manual” for a detailed description of the #i ncl ude pre-
processor directive.

1.3.3 The Procedure from Compilation through Linking

This section describes the procedures used from source file compilation through linking.

1.3.3.1 Compilation and Assembly

There is no need to be aware of whether or not library routines are used when compiling and assem-
bling source files.

m Examplem
The following commands compile and assembl e the foo.c sourcefile.

CC665S / TM66589 FOO. C

RAS66K FOO. ASM / CD
The /CD option to the RAS66K assembler is required to maintain distinction between upper and
lower case letters in variable and function names in the C source program. To use the CDB665
source level debugger, specify the /SD option to the CC655S C compiler and the /CC option to the
RAS66K assembler.
1.3.3.2 Library Linking
Following the compilation and assembly operations, the next step is the link operation using the

RL66K linker to create an absolute object file. Here, in addition to the object file created by the
compilation and assembly, you must also specify astartup routine and alibrary file.

1-5

Chapter 1, Overview

m Examplelm
Use the following command to link the object file foo.obj.
RL66K FOO A:\ 66K\ STARTUP\ S66589S, ,, A:\ 66K\ LI B\ L66KS50S. LI B / CC

In this example the S66589S.0BJ startup routine is in the A:\\66K\STARTUP directory. Also, the
L66KS50S.LIB library fileisin the A:\\66K\LIB directory.

The library file path specification can be omitted if the library file is in the path indicated by the
LIB66K environment variable.

m Example2m

The following RL66K command line would be used if the L66KS50S.LIB file were in the
A:\66K\LIB directory and the LIB66K environment variable were set to A:\66K\LIB.

RL66K FOO A:\ 66K\ STARTUP\ S66589S, ,, L66KS50S. LI B / CC
m Major Point m
Always specify the /CC option when linking.
Some library routines include their own initialization routine. The execution of these initialization
routines is implemented by calling the subroutine with the name _$$cont ent _of i nit inthe

startup routine.

The /CC option informs the RL66K linker that these initialization routines exist. If an object file is
linked without the /CC option, initialization routine linking will not be performed correctly.

1-6

Chapter 1, Overview

1.4 Role of Header Files

The header files function as an interface between user programs and the library. Including the head-
er file that corresponds to a given library routine provides the compiler with the syntax (prototype)
of that library routine, as well as any constants and types used by that routine.

1.4.1 Inclusion of Macros, Constants, and Types

Header files must be included to define the macros, constants, and types included in the library.

The definitions of the macros, constants, and types used by library routines are included in the head-
er files. Programmers can a so use these macros, constants, and types. The definitions of these items

as used by the library routines and as used by user programs must be completely identical.

In most cases, the programmer needs only be aware of the meaning of macros, constants, and types
included in the header files, and need not be concerned with the details of their definitions.

m Examplem
#i ncl ude <stdarg. h>
int func (int num , ...)
{
int i;
int total;

va_list arg;

va_start (arg , num;

total = 0;
for (i=0 ; i < num; ++i)
{
total += va_arg (arg , int);
}

va_end(arg);
return total;

}

This example shows the use of variable arguments. Since the macros va_start, va_ar g, and
va_end and thetypeva_ | i st are defined in st dar g. h, that header file is included. The pro-
grammer does not need to know the actual details of the definitions.

1-7

Chapter 1, Overview

1.4.2 Inclusion of Function Prototype Declarations

The header files include specifications for the calling syntax for all functions in the library. That is,
they include the specifications for the types of the arguments and for the return type. This declara-
tionis generally referred to as a prototype declaration.

The compiler checks that the syntax of calls to library functions in user programs, i.e., the number
of arguments, their type, and the return type, conforms to that of the prototype declaration in the
header file. The compiler reports awarning or, in certain cases, an error, if acall does not match the
function’s prototype.

Compiler type checking is extremely important for program reliability. Thisis because syntax errors
in function calls would otherwise become algorithm errors that would be difficult to discover.

m Examplem
Thest r | en function is used in this example.

#i ncl ude <string. h>

i nt i;
i nt func(void)
{
i nt | en;
len = strlen(i); /* Warning */
}

Thest r| en function’s prototypeinthe st ri ng. h header fileisasfollows:
size_t strlen(char *);

Sincethevariablei (whosetypeisi nt) is specified asthe argument in thefirst call tothe st r | en
function, the compiler issues awarning for this call.

The compiler is able to perform these checks because the st ri ng. h header file was included at

the start of the program. If the st ri ng. h file were not included, the compiler could not perform
these checks.

1-8

Chapter 1, Overview

1.5 Functions and Macros
1.5.1 Differences between Functions and Macros

The term “library routine” as used in this document actually refers to both functions and function-
like macros. The library routines included in the RTL665S run-time library are included as either
functions, macros, or both. The form(s) in which each library routine is provided are documented in
section 1.7, “Header File Contents,” chapter 2, “ Standard Built-In Routines Reference,” and chapter
3, "Standard I nput/Output Routines Reference.”

Normally programs have no need to be aware of whether a routine that they use is a macro or a
function. Programs only need to be aware of the differences between macros and functions in the
following cases.

 Although function calls are expanded as subroutine calls, macros calls are expanded to inline
code by the preprocessor. That is, a macro is faster than afunction by exactly the overhead asso-
ciated with a function call. However, since the same code is expanded each time a macro is
called, the program size will be larger than if afunction had been used.

¢ While afunction name has meaning as an address at compile time, macro names are expanded by
the preprocessor, and no longer exist at compile time. This means that aroutine implemented as a
macro cannot be used through a function pointer.

¢ Although the compiler checks function cals for type matching, it does not type check macro
calls. That means that the programmer is responsible for checking the argument and return value
types associated with macro calls.

1.5.2 Calling Routines with Macro Definitions as Functions

Some of the library routines included in the RTL665S run-time library are provided as both macros
and functions. The t oupper and related functions from ct ype. h are examples. Routines of this
type are listed as “Macro/Function” in section 1.7, “Header File Contents,” chapter 2, “ Standard
Built-In Routines Reference,” and chapter 3, “ Standard I nput/Output Routines Reference.”

Since the function prototype declaration for a routine appears before the macro definition in the
header file, normally, the macro definition will be used. However, there are two methods for using
the function form of such routines. The remainder of this section describes these methods.

1.5.2.1 Removing a Macro Definition Using #undef

The first method for forcing the use of the function definition of a routine is to remove the macro
definition of the routine from the environment using the #undef preprocessor directive. Be sure to
place the #undef preprocessor directive between the line where the header file is included using
the #i ncl ude preprocessor directive and the first line where the routine is used. The safest place
isimmediately following the #i ncl ude directives.

1-9

Chapter 1, Overview

m Examplen

In this example the #undef directive removes the definition of the t oupper macro from the envi-
ronment.

#i ncl ude <ctype. h>
#undef t oupper /* Renoves the macro definition. */

voi d func(void)

{

i nt C;

c = toupper(c); /* The routine is called as a function. */

}

1.5.2.2 Enclosing the Routine Name in Parentheses

The second method is to enclose the routine name in parentheses when calling the routine. The pre-
processor recognizes a function-like macro when it sees aleft parenthesis immediately following the
macro name. Therefore, preprocessor macro expansion of function-like macros can be defeated by
enclosing the macro name in parentheses.

m Examplenm

In this example the function definition of the t oupper routine is caled by enclosing the name
“t oupper” in parentheses.

#i ncl ude <ctype. h>

voi d func(void)

{

i nt C;

c = (toupper) (¢); [/* The routine is called as a function.
*/
}

1-10

Chapter 1, Overview

1.6 Reentrant Routines

In addition to the L66K S50x.LIB full set library file, which includes routines for al the library rou-
tines described in this manual, RTL665S also includes the R66K S50x.LIB library file, which col-
lects only the reentrant routines.

The reentrant version should be specified if the same library routine is used for both interrupt and
normal processing.

See the file RTL665S.DOC to determine which library routines are reentrant, i.e., to determine if
they are included in the reentrant version library file.

Some run time library routines set the global variable er r no to an error value if they receive an
incorrect value as an argument. Strictly speaking, these routines cannot be said to be reentrant.
However, since there is no processing within the library routines that depends on the vaue of
er r no, these routines will correctly perform their intended functions even if the value of errno is
overwritten during interrupt handling. Therefore, RTL665S treats functions that reset err no as
reentrant routines.

Be careful when handling the value of er r no when routines that set its value are used in both inter-

rupt handling and normal processing. Interrupt routines should save er r no on entry and restore it
prior to exit if er r no isreferenced in normal processing.

1-11

Chapter 1, Overview

m Examplenm

This example demonstrates the use of the at ol routinein an interrupt handler.

1-12

#i ncl ude <errno. h>
#i ncl ude <stdlib. h>

char data_buf[16];
[ong val ue;

#pragma i nterrupt GIM OVF _function 0X2C

void GIM OVF function(void)

{

/*

Saves the current value of errno for normal processing.
*/
int old _errno = errno;

val ue = atol (data_buf);

/*

Restores the current value of errno for normal processing.
*/
errno = ol d_errno;

Chapter 1, Overview

1.7 Header File Contents

This section describes the functions, macros, global variables, constant macros, and types provided
by the RTL665S run-time library.

The classification column classifies each object into one of the following.

Function

Macro
Macro/Function
Constant macro
Type

Global variable

The term “macro/function” indicates that both macro and function definitions of the routine are pro-
vided. Detailed descriptions of the functions, macros, and macro/function routines are provided in
chapter 2, “ Standard Built-In Routines Reference,” and chapter 3, “ Standard Input/Output Routines
Reference.”

1-13

Chapter 1, Overview

1.7.1 Character Classification and Conversion <ct ype. h>

The header ct ype. h declares routines for classifying and converting single byte characters.

Name Classification Description

isalnum Macro/Function Testsif acharacter is either aletter or adecimal digit.

isapha Macro/Function Testsif acharacter isaletter.

iscntrl Macro/Function Tests if a character is a control character, i.e., is one of 0x00 to
Ox1F or 7F.

isdight Macro/Function Testsif acharacter isadecimal digit.

isgraph Macro/Function Testsif a character is a printable character other than space (' '),
i.e, ifitisintherange 0x21 to OX7E.

islower Macro/Function Testsif acharacter isalower case letter.

isprint Macro/Function — Tests if a character is a printable character including the space
character ("), i.e., if it isin the range 0x20 to OX7E.

ispunct Macro/Function Tests if a character is a punctuation character, i.e., is one of
0x21 to Ox2F, 0x3A to 0x40, 0x5B to 0x60, and 0x7B to OX7E.

isspace Macro/Function Tests if a character is a white space character, i.e., is one of
0x09 to Ox0D or space (').

isupper Macro/Function Testsif acharacter is an upper case |etter.

isxdigit Macro/Function Testsif acharacter is a hexadecimal digit.

tolower Macro/Function ~ Converts upper case lettersto lower case |etters.

toupper Macro/Function Converts lower case |ettersto upper case letters.

1.7.2 Error Identification <err no. h>

The header er r no. h includes information related to errors that occur in library routines. The glob-
a variable er r no and constant macros for values that are assigned to er r no are defined in
errno. h.

Name

Classification

Description

errno

EDOM

ERANGE

Global variable

Constant macro

Constant macro

The global variable errno isof typevol atile int and
holds error state information. Itsinitial valueis zero, and it is set
to one of the following non-zero values according to the error
state when an error occursin alibrary routine.

The EDOM constant indicates a domain error. Domain errors
occur when an attempt is made to apply a mathematical function
to a value outside its domain, for example calling the asi n
function with avalue greater than one or less than minus one.

The ERANGE constant indicates an overflow error. Overflows
occur when the result of a mathematical function exceeds the
range of vaues that can be expressed in avalue of type doubl e.

1-14

Chapter 1, Overview

1.7.3 Floating Point Limits <f | oat . h>

The header f | oat . h defines constant macros that express limit values for floating point numbers
of type f | oat , doubl e, and | ong doubl e. Since the typesdoubl e and | ong doubl e are
identical in the CC665S C compiler the limitsfor the | ong doubl e type are the same as those for
thedoubl e type.

Name Classification Description

DBL_DIG Constant macro The number of digits of decimal precision provided by numbers
of typedoubl e.

DBL_EPSILON Constant macro The smallest positive floating point number such that 1.0 +

DBL_MANT _DIG

DBL_MAX

DBL_MAX_EXP

DBL_MAX_10_EXP

Constant macro

Constant macro

Constant macro

Constant macro

DBL_EPSILON can be differentiated from 1.0 by numbers of
typedoubl e.

The number of bits in the fraction part of numbers of type
doubl e.

The largest value that can be represented by numbers of type
doubl e.

The largest integer such that two (2) raised to that number
minus one is representable by numbers of type doubl e.

The largest integer such that ten (10) raised to that number is
representable by numbers of type doubl e.

DBL_MIN Constant macro The smallest value that can be represented by numbers of type
doubl e.
DBL_MIN_EXP Constant macro The smallest integer n such that two (2) raised to the power n

DBL_MIN_10_EXP

Constant macro

minus one is representable by numbers of type doubl e.

The smallest integer such that ten (10) raised to that nhumber is
representable by numbers of typedoubl e.

FLT DIG Constant macro The number of digits of decimal precision provided by numbers
of typef | oat .
FLT_EPSILON Constant macro The smallest positive floating point number such that 1.0 +

FLT_MANT DIG

Constant macro

FLT_EPSILON can be differentiated from 1.0 by numbers of
typef | oat .

The number of bits in the fraction part of numbers of type
float.

FLT_MAX Constant macro The largest value that can be represented by numbers of type
float.
FLT_MAX_EXP Constant macro The largest integer such that two (2) raised to that number

FLT MAX_10 EXP

Constant macro

minus one is representable by numbers of typef | oat .

The largest integer such that ten (10) raised to that number is
representable by numbers of typef | oat .

FLT_MIN Constant macro The smallest value that can be represented by numbers of type
float.
FLT_MIN_EXP Constant macro The smallest integer such that two (2) raised to that number

minus one is representable by numbers of typef | oat .

1-15

Chapter 1, Overview

Name

Classification

Description

FLT_MIN_10 EXP Constant macro

FLT_RADIX Constant macro
FLT_ROUNDS Constant macro
LDBL_DIG Constant macro

LDBL_EPSILON Constant macro
LDBL_MANT DIG Constant macro
LDBL_MAX Constant macro
LDBL_MAX_EXP Constant macro
LDBL_MAX_10_EXP Constant macro
LDBL_MIN Constant macro
LDBL_MIN_EXP Constant macro
LDBL_MIN_10_EXP Constant macro

The smallest integer such that ten (10) raised to that number is
representable by numbers of typef | oat .

The floating point exponent representation radix.
Indicates that rounding to nearest is performed.
ThesameasDBL_DIG.

The same as DBL_EPSILON.

The same as DBL_MANT_DIG.

Thesameas DBL_MAX.
ThesameasDBL_MAX_EXP.

The same asDBL_MAX_10_EXP.
Thesameas DBL_MIN

The sameasDBL_MIN_EXP.

The sameasDBL_MIN_10 EXP.

1-16

Chapter 1, Overview

1.7.4

Integer Limits <l im ts. h>

Theheader | i mi t s. h defines constant macros that express limiting values for the integral types.

Name Classification Description
CHAR_BIT Constant macro 8

The number of bitsin thetypechar .
CHAR_MAX Constant macro 127

The maximum value for objects of typechar .
CHAR_MIN Constant macro —128

The minimum value for objects of type char .
INT_MAX Constant macro 32767

The maximum value for objects of typei nt .
INT_MIN Constant macro —-32768

The minimum value for objects of typei nt .
LONG_MAX Constant macro 2147483647

The maximum value for objects of typel ong i nt .
LONG_MIN Constant macro —2147483648

The minimum value for objects of typel ong i nt.
SCHAR_MAX Constant macro 127

The maximum value for objects of typesi gned char .
SCHAR_MIN Constant macro 128

The minimum value for objects of typesi gned char.
SHRT_MAX Constant macro 32767

The maximum value for objects of typeshort int.
SHRT_MIN Constant macro —-32768

The minimum value for objects of typeshort int.
UCHAR_MAX Constant macro 255

The maximum value for objects of type unsi gned char .
UINT_MAX Constant macro 65535

The maximum value for objects of typeunsi gned i nt.
ULONG_MAX Constant macro 4294967295

The maximum value for objects of type unsi gned | ong

int.
USHRT_MAX Constant macro 65535

The maximum value for objects of type unsi gned short
int.

1-17

Chapter 1, Overview

1.7.5 Mathematical Functions <mat h. h>

The header mat h. h declares several mathematical functions. All calculations are performed on
objects of type doubl e. Certain of these functions set the value of the global variable er r no to an
error value if an error occurs. See the descriptions of each routine in chapter 2, “ Standard Built-In

Routines Reference.”

Name Classification Description

HUGE_VAL Constant macro The maximum value that can be represented by objects of type
doubl e. Thisvalueis used to express infinity.

exp Function Computes the exponential function.

frexp Function Breaks a floating point number into its fraction and exponent
parts.

Idexp Function Computes the product of its argument and a power of 2.

log Macro/Function ~ Computes the natural logarithm.

log10 Macro/Function ~ Computes the common logarithm.

modf Function Breaks a floating point number into its integral and fractional
parts.

cosh Function Computes the hyperbolic cosine.

sinh Function Computes the hyperbolic sine.

tanh Function Computes the hyperbolic tangent.

cell Function Computes the ceiling of afloating point number.

fabs Function Takes the absolute value of afloating point number.

floor Function Computes the floor of (i.e., the largest integer not greater than) a
floating point number.

fmod Function Computes the remainder of two floating point numbers.

pow Function Computes the value of x raised to the y power for two floating
point numbersx and y.

sart Function Computes the square root.

acos Macro/Function ~ Computes the arc cosine.

asin Macro/Function ~ Computes the arc sine.

atan Function Computes the arc tangent.

atan2 Function Computes the principle value of the arc tangent of its two argu-
ments. The at an2 function can be used to compute the arc tan-
gent of avaluetoo large to be computed by the at an function.

cos Macro/Function Computes the cosine.

sin Macro/Function Computes the sine.

tan Function Computes the tangent.

1-18

Chapter 1, Overview

1.7.6 Global Jump <setj np. h>

The header set j np. h includes declarations for the function that implements the global jump func-
tionality, and definitions of a macro and atype. It is possible to jump out of the currently executing
function using these routines.

Name Classification Description

jmp_buf Type Global jumps are implemented by saving an environment using
set j np, and then restoring that environment using | ongj np.
Thej np_buf type represents stored environment objects.

setjmp Macro Stores the environment in argument, which must be an object of
typej nmp_buf .

longjmp Function Restores an environment saved with the set j nmp routine. As a

result, program execution transfers to the place where set j np
was called.

1.7.7 Variable Arguments <st dar g. h>

The header st dar g. h includes the definitions and declarations used to implement functions that
take a variable number of arguments. Using these routines it is possible to create routines that take a
variable number of arguments without concern for assembly language level details.

Name Classification Description

va list Type This type is used to hold information concerning variable argu-
ments lists. It is used by theva_start, va_arg, and
va_end routines.

va_start Macro Prepares to reference a variable arguments list. This routine
must be invoked prior tousingva_ar g.

va arg Macro Returns the next argument value in a variable arguments list.
The va_ar g routine alows the second and later arguments to
the function to be accessed sequentially.

va_end Macro Performs the clean-up activities required after referencing a

variable arguments list.

1-19

Chapter 1, Overview

1.7.8 General Definitions <st ddef . h>

The header st ddef . h defines certain data types and macros that are used widely.

Name Classification Description

NULL Constant macro Express anull pointer.

offsetof Macro Returns the location of a structure member as the number of
bytes from the start of that structure.

ptrdiff_t Type Thetypeptrdi ff_t isasigned integra type that represents
the difference between two pointers.

size t Type The type si ze_t is an unsigned integral type that represents
theresult of thesi zeof operator.

1.7.9 Input/Output Processing <st di 0. h>

The header st di 0. h declares routines that perform input/output processing, and includes macros
and type definitions used by those routines.

Name Classification Description

EOF Constant macro -1
Although the original meaning of EOF in the ANSI/ISO9899 C
standard is end-of-file, it is also used as the error return value by
RTL665.

FILE Type Type for streams.

stderr Macro Pointer to standard error stream.

stdin Macro Pointer to standard input stream.

stdout Macro Pointer to standard output stream.

fgetc Function Gets a character from a stream.

fgets Function Gets a string from a stream.

fprintf Function Sends formatted output to a stream.

fputc Function Outputs a character to a stream.

fputs Function Outputs a string to a stream.

fscanf Function Scans and formats input from an input stream.

getc Macro/Function Gets a character from a stream.

getchar Macro/Function Gets a character from the standard input.

gets Function Reads a string from the standard inpuit.

printf Function Writes formatted output to the standard output.

putc Macro/Function Outputs a character to a stream.

1-20

Chapter 1, Overview

Name Classification Description

putchar Macro/Function Outputs a character to the standard output

puts Function Outputs a string to the standard output.

scanf Function Scans the standard input stream, and inputs with formatting.
sprintf Function Writes formatted data as a string.

sscanf Function Reads formatted data from a string.

ungetc Function Pushes a character back in an input stream.

vfprintf Function Writes formatted output to a stream.

vsprintf Function Writes formatted data as a string.

vprintf Function Writes formatted outpuit.

1.7.10 General Utilities <stdl i b. h>

The header st dl i b. h defines several general purpose utility routines and macros and types used

by those routines.

Name Classification Description

div_t Type Thetype di v_t isthe structure type returned by the di v func-
tion. It is a structure with two members of type i nt that hold
the quotient and remainder.

Idiv_t Type The type | di v_t is the structure type returned by the | di v

function. It is a structure with two members of type | ong that
hold the quotient and remainder.

1-21

Chapter 1, Overview

Name Classification Description

RAND_MAX Constant macro 32767
The maximum value of the pseudo-random numbers returned by
ther and function.

abs Function Returns the absolute value of an integer value of typei nt .

atof Macro/Function ~ Converts a character string to afloating point number of type
doubl e.

atoi Macro/Function Converts an integer of typei nt to acharacter string.

atol Macro/Function ~ Converts an integer of typel ong to acharacter string.

bsearch Function Searches a sorted array for the specified item using a binary
search.

calloc Function Allocates the required amount of memory.

div Function Computes the quotient and remainder of two integers of type
i nt, stores the quotient and remainder in a structure of type
di v_t, and returnsthat structure.

free Function Releases all ocated memory.

itoa Function Converts an integer of type i nt to a character string in the
specified radix.

labs Function Returns the absolute value of an integer of typel ong.

Itoa Function Converts an integer of type | ong to a character string in the
specified radix.

Idiv Function Computes the quotient and remainder of two integers of type
| ong, stores the quotient and remainder in a structure of type
| di v_t,and returnsthat structure.

malloc Function Allocates memory.

gsort Function Sorts the elementsin an array using the Quicksort algorithm.

rand Function Generates a pseudo-random number.

realloc Function Reallocates memory.

srand Macro/Function Initializes the sequence of pseudo-random numbers returned by
rand.

strtod Macro/Function ~ Converts a character string to afloating point number of type
doubl e.

strtol Function Converts a character string to an integer of typel ong.

strtoul Macro/Function Converts a character string to an integer of type
unsi gned
| ong.

ultoa Function Converts an integer of type unsi gned | ong to a character

string in the specified radix.

1-22

Chapter 1, Overview

1.7.11 String Handling <stri ng. h>

The st ri ng. h header declares functions that manipulate character strings and memory areas.

Name Classification Description

memchr Function Searches a memory area for the place where a certain single
byte datum first appears.

memcmp Function Compares two memory aress.

memcpy Function Copies the datain a memory areato another memory area.

memmove Function Copies the data in a memory area to another memory area.
Unlike mentpy, memmove operates correctly if the two areas
overlap.

memset Function Fills afixed memory areawith a specified single byte datum.

strcat Function Concatenates character strings.

strchr Function Searches a character string for the place where a certain character
first appears.

strcmp Function Compares character strings.

strcpy Function Copies character strings.

strespn Function Computes the length of the initial section of the first character
string that does not include any characters from the second cha-
racter string.

strlen Function Computes the length of a character string.

strncat Function Concatenates the first n bytes of a character string to the end of
another character string.

strncmp Function Compares the first n bytes of two character strings.

strnepy Function Copiesthe first n bytes of a character string to another memory
area.

strpbrk Function Searches a character string for the first occurrence of any char-
acter in another character string.

strrchr Function Searches a character string for the last occurrence of a character.

strspn Function Computes the length of the initial segment of one character
string that consists of characters from the other character string.

strstr Function Searches in one character string for another character string.

strtok Function Divides a character string into tokens.

1-23

Chapter 1, Overview

1.8 Using the Run-Time Library Reference

Chapters 2 and beyond document al the routines included in the RTL665S run-time library. Each

chapter listsits routinesin a phabetical order.

The explanations assume the use of CC665S's /WIN option. If this option is not used, arguments
that are pointers to ROM (const char *, const void *, etc.) require the use of routine variants sup-
porting such pointers. For further details on these routines, see the appendix “Routines Accessing

ROM.” For further details on the /WIN option, see the CC665S User’'s Manual.

1-24

Chapter 2: Standard Built-In Routines Reference

<Routine Name> Classification

The upper left of each page lists the routines described and the
upper right indicates their classification as function, macro, or
macro/function.

Function

This sections gives a concise description of the routine’ s function.

Syntax

Indicates the header file that declares the routine(s) and gives the
prototype(s) for the routine(s) and meaning of the argument(s).

Description

Describes the routine’ s function and usage in detail.

Return value

Specifies the return value.

See also
Listsrelated routines.

Example

Provides programming examples that actually use the routine.
These examples are designed to show the function of the routine in
an actual program. These examples are not necessarily actual appli-
cation programs.

Chapter 2

Standard Built-In
Routines Reference

This chapter describes the standard built-in routines of the RTL665S library. The routines are
ordered alphabetically.

If acall to aroutine includes pointers to ROM (const char *, const void *, etc.) among its arguments
and the /WIN option is not specified, a specia variant of the routine must be used. For further
details on the naming conventions for these variants, see the appendix “Routines Accessing ROM.”

Chapter 2, Standard Built-In Routines Reference

abs Function

Function

Returns the absolute value of an integer of typei nt .

Syntax
#include <stdlib.h>
int abs(intn);
n An integer
Description

The abs function returns the absolute value of its integer argument n.

Return value

The abs function returns an integer in the range 0 to 32767. However, if n is —32768 it
returns —32768.

See also

fabs labs

Example

#i ncl ude <stdlib. h>

voi d mai n(void)
{

int n,res;

n = -1234;

res = abs(n);

2-1

Chapter 2, Standard Built-In Routines Reference

acos Macro/Function

Function

Computes the arc cosine of its argument.

Syntax

#include <math.h>
double acos(doublex);
X Thereal number value for which the arc cosine is to be computed

Description
The acos routine computes the arc cosine of its argument x. The value of x must be in the

range —1 to 1. If an argument with a value outside this range is passed to the acos routine,
adomain error occurs and the global variableer r no is set to EDOM.

Return value

The acos routine returns the arc cosine of x, which isavalue in the range 0 to p radians.

See also

asin atan atan2 cos sin tan

Example
#i ncl ude <mat h. h>
voi d mai n(voi d)
{ doubl e x;
doubl e res;
x = 0.5;
} res = acos(Xx);

Chapter 2, Standard Built-In Routines Reference

asin Macro/Function

Function

Computes the arc sine of its argument.

Syntax

#include <math.h>
double asin(doublex);
X The real number value for which the arc sineisto be computed.

Description
The asi n routine computes the arc sine of its argument x. The value of x must be in the

range —1 to 1. If an argument with a value outside this range is passed to the asi n routine,
adomain error occurs and the global variable er r no is set to EDOM.

Return value

Theasi n routine returns the arc sine of x, which isavauein the range /2 to p/2 radians.

See also

acos atan atan2 cos sin tan

Example
#i ncl ude <mat h. h>
voi d mai n(voi d)
{ doubl e x;
doubl e res;
x = 0.5;
} res = asin(x);

Chapter 2, Standard Built-In Routines Reference

atan Function

Function

Computes the arc tangent of its argument.

Syntax

#include <math.h>
double atan(doublex);

X Thereal number value for which the arc tangent is to be computed

Description

The at an function computes the arc tangent of its argument x.

Return value

The at an function returns the arc tangent of x, which is a value in the range /2 to p/2
radians.

See also

acos asin atan2 cos sin tan

Example
#i ncl ude <mat h. h>
voi d mai n(voi d)
{ doubl e x;
doubl e res;
x = 0.5;
} res = atan(x);

2-4

Chapter 2, Standard Built-In Routines Reference

atan?2 Function

Function

Computes the arc tangent of y/x.

Syntax

#include <math.h>
double atan?(doubley, doublex);
X, Y Arbitrary real number values

Description

The at an2 function computes the arc tangent of y/x. This function returns correct values
even when X is zero or close to zero. Returns zero when both x and y are zero.

Return value

The at an2 function returns the arc tangent of y/x, which is a value in the range — to p
radians.

See also

acos asin atan acos sin tan

Example
#i ncl ude <mat h. h>
voi d mai n(voi d)
{
doubl e x;
doubl e v;
doubl e res;
x = 2.0;
y = 3.0;
res = atan2(y, x);
}

2-5

Chapter 2, Standard Built-In Routines Reference

atof Macro/Function

Function

This routine converts a character string to a floating point number of typedoubl e.

Syntax

#include <stdlib.h>
double atof(char *s);
s Character string to be converted

Description
The at of routine converts the character string pointed to by the argument s to a double
precision floating point number, and return that value. Note that at of is equivaent to the
following function call.
strtod(s, (char * *)NULL);
The string s must conform to the following syntax.
[whitespace] [sign] [digit] [.] [digit] [{elE} [sign] digit]

The symbols used have the following meanings.

Symbol Meaning

[white space] Some number of tabs and spaces (may be omitted)

[sign] Sign (may be omitted)

[digit] [.] [digit] Character string expressing a decimal fraction (may be omitted)
[{elE} [sign] digit] Character string expressing the exponent (may be omitted)

The at of routine stops scanning when they encounter an unrecognized character. Also,
they return HUGE_VAL and set er r no to ERANGE if the value converted cannot be rep-
resented by thetypedoubl e.

Return value

The at of routine returns the value of the converted character string in an object of type
doubl e.

2-6

Chapter 2, Standard Built-In Routines Reference

See also

atoi atol strtod strtol strtoul

Example
#i ncl ude <stdlib. h>
voi d mai n(void)
{

doubl e res;

res = atof("1.234e+6");

Chapter 2, Standard Built-In Routines Reference

atoi Macro/Function

Function

This routine converts a character string to an integer of typei nt .

Syntax

#include <stdlib.h>

int atoi(char *s);
S Character string to be converted
Description

Theat oi routine converts the character string pointed to by the argument sto an integer of
type i nt, and return that value. Note that at oi is equivaent to the following function
cal.

(int)strtol(s, (char * *)NULL, 10);

The string s must conform to the following syntax.

[whitespace] [sign] [digit]

The symbols used have the following meanings.

Symbol Meaning

[white space] Some number of tabs and spaces (may be omitted)

[sign] Sign (may be omitted)

[digit] Character string expressing an integer (may be omitted)

The at oi routine stops scanning when they encounters an unrecognized character. Also,
the return value from at oi when an overflow occurs is undefined.

Return value

Theat oi routinereturns the value of the converted character string in an object of typei nt .

See also

atof atol strtod strtol strtoul

Chapter 2, Standard Built-In Routines Reference

Example
#i ncl ude <stdlib. h>
voi d mai n(void)
{

int res;

res = atoi ("32767");

2-9

Chapter 2, Standard Built-In Routines Reference

atol Macro/Function

Function

This routine converts a character string to an integer of typel ong.

Syntax

#include <stdlib.h>
long atol(char *s);
S Character string to be converted
Description
Theat ol routine converts the character string pointed to by the argument sto an integer of
type | ong, and return that value. Note that at ol is equivalent to the following function
call.
(long)strtol(s, (char * *)NULL, 10);
The string s must conform to the following syntax.
[whitespace] [sign] [digit]

The symbols used have the following meanings.

Symbol Meaning

[white space] Some number of tabs and spaces (may be omitted)

[sign] Sign (may be omitted)

[digit] Character string expressing an integer (may be omitted)

The at ol routine stops scanning when they encounter an unrecognized character. If the
converted value is too large to be represented by an integer of type | ong, the at ol rou-
tines return either LONG_MAX or LONG_MIN and set er r no to ERANGE.

Return value

Theat ol routine returns the value of the converted character sring in an object of typel ong.

2-10

Chapter 2, Standard Built-In Routines Reference

See also

atof atoi strtod strtol strtoul

Example
#i ncl ude <stdlib. h>
voi d mai n(void)
{

| ong res;

res = atol ("-2147483647");

2-11

Chapter 2, Standard Built-In Routines Reference

bsearch Function

Function

This function performs a binary search for a specified item in a sorted array.

Syntax

#include <stdlib.h>

void *psearch(void *key, void *base, size t nelem, size t size,
int (*cmp)(void *, void*));

key Search key

base Array to be searched

nelem Number of elementsin the array

size Byte count indicating the size of each element

cmp Pointer to a comparison function

Description

The bsear ch function searches for an element that matches key in the array base, which
has nelem elements. NULL is returned if no element is found that matches the specified
item. Note that the array elements must be sorted in advance.

The function *cmp is a user-specified comparison function that must take as its arguments
two voi d pointers (void *). If these two arguments are eleml and elem2, the function must
return the following integers based on the result of the comparison.

Condition Return Value
*eleml < *elem2 A negative value
*eleml == *elem2 0

*eleml > *elem2 A positive value

Return value

The bsear ch function returns a pointer to the element in the array that matches key.
NULL isreturned if there is no matching element.

2-12

Chapter 2, Standard Built-In Routines Reference

See also
gsort
Note: The comparison function must have the __noacc modifier. Without this modifier, compiling
with CC665S's /REG option causes the function to take its first argument from the accumu-

lator instead of the stack, where bsearch() placesit.

For further details, see the sections “/REG Option” and “Functions Modified with __accpass
and __noacc” in the CC665S User’'s Manual.

Example
#include <stdlib. h>

char *array[5];

char a[10] = "apple";
char b[10] = "cherry";
char ¢[10] = "orange";
char d[10] = "peach”;
char €[10] = "pear";

char **curr_ptr;
int _ noacc conpare(char *, char **);

voi d nai n(void)

{

array[0] = a;

array[1] =b;

array[2] =c;

array[3] =d;

array[4] = e;

curr_ptr = (char **)bsearch("peach", array, 5, sizeof(char *), conpare);
}
int _ noacc conpare(char *elel, char **ele2)
{

return(strcenp(elel, *ele2));
}

2-13

Chapter 2, Standard Built-In Routines Reference

calloc Function

Function

Allocates the required amount of memory

Syntax

#include <stdlib.h>

void *calloc(size_t nelem, size tsize);
nelem The number of elements

size The size of each element

Description

cal | oc alocates nelem ”~ size bytes of memory in the dynamic segment. The allocated
memory isall initialized to zero.

Return value

cal | oc returns a pointer to the newly allocated memory. It returns NULL if the requested
memory could not be allocated or if either nelem or size was zero.

See also

free malloc realloc

Example

#i ncl ude <stdlib. h>

#i ncl ude <string. h>
voi d mai n(void)
{

char *s;

s = (char *)calloc(10, sizeof(char));
strcpy(s, "sanple");

2-14

Chapter 2, Standard Built-In Routines Reference

celil Function

Function

Computes the ceiling of (i.e., rounds up) a floating point number.

Syntax

#include <math.h>
double ceil(doublex);
X Floating point value

Description

Thecei | function finds the smallest integer not less than its argument.

Return value

The cei | function returns the value found as an object of type doubl e with an integral

vaue.
See also
floor fmod
Example
#i ncl ude <mat h. h>
voi d mai n(voi d)
{
doubl e num
doubl e up;
num = 12. 3;

up = ceil (num;

2-15

Chapter 2, Standard Built-In Routines Reference

COS

Function

Computes the cosine of its argument.

Syntax

#include <math.h>
double cos(double x);

X An anglein radian units

Description

The cos routine computes the cosine of the input value x.

Return value

The cos routine returns avaluein therange—1to 1.

See also

acos asin atan atan2 sin tan

Example
#i ncl ude <mat h. h>
voi d mai n(voi d)
{ doubl e x;
doubl e res;
x = 0.5;
} res = cos(x);

2-16

Macro/Function

Chapter 2, Standard Built-In Routines Reference

cosh Function

Function

Computes the hyperbolic cosine of its argument.

Syntax

#include <math.h>
double cosh(doublex);
X An anglein radian units

Description

The cosh function computes the hyperbolic cosing, i.e., (eX+ eX)/2, of the input value x.

Return value
The cosh function returns the hyperbolic cosine of the argument x.

It returns HUGE_VAL and sets the global variable er r no to ERANGE if the result is too
large to represent.

See also

acos asin atan atan2 cos sin sinh tan tanh

Example
#i ncl ude <mat h. h>
voi d mai n(voi d)
doubl e x;
doubl e res;
x = 0.5;
} res = cosh(x);

2-17

Chapter 2, Standard Built-In Routines Reference

div Function

Function

Computes the quotient and remainder of two values of typei nt .

Syntax

#include <stdlib.h>
div_t div(int numer, int denom);
numer Dividend

denom Divisor

Description
The di v function divides the argument numer by the argument denom and returns the

result in an object of typedi v_t . Thetype di v_t has two elements of typei nt, quot
and r em and thedi v function stores the quotient in quot and the remainder inr em

Return value

Thedi v function returns the a structure that has quot (quotient) and r em(remainder) as
its members.

See also

Idiv

Example

#i ncl ude <stdlib. h>

voi d mai n(void)

{
div_t res;
i nt num den;
i nt quot, rem
num = 32767,
den = 1000;

res = div(num den);
quot = res. quot;
rem= res.rem

2-18

Chapter 2, Standard Built-In Routines Reference

exp Function

Function

Computes the exponentia function (&) of its argument.

Syntax

#include <math.h>
double exp(doublex);
X Floating point value

Description

The exp function computes the exponentia function (e of its argument x.

Return value

The exp function returns the value eX. Returns HUGE_V AL on overflow and 0.0 on under-
flow. Setser r no to ERANGE for both these cases.

See also

frexp ldexp log logl0 pow sqrt

Example
#i ncl ude <mat h. h>
voi d mai n(voi d)
{ doubl e x;
doubl e res;
X = 5.5;
} res = exp(x);

2-19

Chapter 2, Standard Built-In Routines Reference

fabs Function

Function

Computes the absolute value of afloating point number.

Syntax

#include <math.h>
double fabs(doublex);
X Floating point value

Description

The f abs function computes the absolute value of the floating point number given as the
argument X.

Return value

Thef abs function returns the absolute value of the argument x.

See also
abs labs
Example
#i ncl ude <mat h. h>
voi d mai n(voi d)
{ doubl e num
doubl e val;
num = 12. 3;
} val = fabs(num;

2-20

Chapter 2, Standard Built-In Routines Reference

floor Function

Function

Truncates a value at the decimal point.

Syntax

#include <math.h>
double floor(doublex);

X Floating point value

Description

Thef | oor function returnsthe largest integer not greater than the argument x.

Return value

Thef | oor function returns the largest integer not greater than the argument x as a floating

point number.
See also
ceill fmod
Example
#i ncl ude <mat h. h>
voi d mai n(voi d)
{

doubl e num
doubl e down;

num = 12. 3;

down = floor(num;

2-21

Chapter 2, Standard Built-In Routines Reference

fmod Function

Function

Computes the floating point remainder.

Syntax

#include <math.h>
double fmod(double x, doubley);
X, Y Floating point value

Description

The f nmod function computes the value f, which is the remainder of x divided by y such that
x =ay +f, whereais an integer, f hasthe samesignasx, and | f | islessthan |y |.

Return value

The f nod function returns the remainder as a floating point value. It sets the global vari-
ableer r no to EDOM if yiszero.

See also

ceil fabs floor modf

Example
#i ncl ude <mat h. h>
voi d mai n(voi d)
{
doubl e x;
doubl e v;
doubl e res;
x = 7.0;
y = 2.0;
res = fnod(x, y);
}

2-22

Chapter 2, Standard Built-In Routines Reference

free Function

Function

Releases memory.

Syntax

#include <stdlib.h>
void free(void *ptr);
ptr Pointer to the memory to be released
Description
f r ee releases memory allocated by cal | oc, mal | oc, orreal | oc. ptr must be a point-
er returned by cal | oc, mal | oc, or r eal | oc. The operation is undefined if a pointer to

any other areais passed to f r ee. f r ee returns without taking any action if it is passed a
NULL pointer.

Return value

None

See also

caloc malloc realoc

Example

#i ncl ude <stdilb. h>

#i ncl ude <string. h>
voi d mai n(void)
{

char *s;

s = (char *)malloc(10);
strcpy(s, "sanple");

frée(s);

2-23

Chapter 2, Standard Built-In Routines Reference

frexp Function

Function

Syntax

Breaks a floating point number into its fraction and exponent parts.

#include <math.h>

double frexp(doublex, int *pexp);

X Floating point value

pexp Pointer to the location that will hold the exponent

Description

The f r exp function bresks the argument x into a fractional part m (such that the absolute
value of mis 0.5 or greater and less than 1.0) and an exponent part n, such that the relation
x=m" 2" holds. Note that it stores the exponent n, which is an integer value, at the loca
tion pointed to by pexp.

Return value

Thef r exp function returns the value of the exponent m.

See also
Idexp modf
Example
#i ncl ude <mat h. h>
voi d mai n(voi d)
{ doubl e x;
doubl e mant;
i nt pexp;
x = 18. 4;
} mant = frexp(x, &pexp);

2-24

Chapter 2, Standard Built-In Routines Reference

isalnum ... isxdigit Macro/Function

Function

These routines classify characters.

Syntax

#include <ctype.h>

int isalnum(int c);
int isapha(int ¢);
int iscntrl(int c);

int isdigit(int c);
int isgraph(int c);

int isower(int c);
int isprint(int c);
int ispunct(int c);
int isspace(int c);
int isupper(int c);
int isxdigit(int c);
c Single byte character (an integer between 0x00 and Oxff inclusive)
Description

These routines determine the classification of the character ¢, and return the result of that
determination. These routines assume the ASCI| character set.

Theresult is undefined for values of ¢ outside the range 0x00 to Oxff.

2-25

Chapter 2, Standard Built-In Routines Reference

The table below lists these routines and the test each one performs.

Routine Test

isalnum Tests if a character is a decimal digit ('0' to '9') or an aphabetic char-
acter ('a'to 'z or '‘A'to '2)).

isalpha Testsif acharacter is an aphabetic character ('a to 'z’ or 'A' to 'Z").

iscntrl Testsif acharacter is a control character, i.e. is one of 0x00 to Ox1f or
Ox7f.

isdigit Testsif acharacter isadecimal digit ('0' to '9").

isgraph Testsif acharacter is a printable character other than space (' '), i.e, is
in the range 0x21 to Ox7e.

islower Testsif acharacter isalower case letter (‘a to 'Z').

isprint Testsif a character is a printable character including the space charac-
ter ('), i.e, isin the range 0x20 to Ox7e.

ispunct Tests if a character is a punctuation character, i.e., is one of 0x21 to
0x2f, Ox3ato 0x40, 0x5b to 0x60, and 0x7b to Ox7e.

isspace Tests if a character is a white space character, i.e., is one of 0x09 to
0x0d and space (').

isupper Testsif acharacter is an upper case letter ('A' to 'Z").

isxdigit Tests if a character isahexadecimd digit (0'to'9, 'd to'f', or 'A"to 'F).

Return value

These routines return a value other than zero if the condition is fulfilled, and zero if it is not

fulfilled.

The return valve is undefined for valves of ¢ outside the 0x00 to Oxff.

See also

2-26

toupper tolower

Chapter 2, Standard Built-In Routines Reference

Example

#i ncl ude <ctype. h>

voi d

{

mai n(voi d)
i nt C;
i nt retvall , retval2 , retval 3
/*

The following |oop test the classes
*/

for (c="'a ; c<="z2 ; ++)

{ retvall = isalnum c); /*
retval2 = islower(c); /*
retval 3 = isupper(c); /*
retval4 = isdigit(c); /*
retval5 = isxdigit(c); /*

, retval4 , retval5;

of the letters 'a" to 'z'.

True, since al phabetic. */
True, since all are | ower
case. */

Fal se, since none are upper
case. */

Fal se, since none are decima
digits. */

True for "a" to 'f', false
for the others. */

2-27

Chapter 2, Standard Built-In Routines Reference

itoa Function

Function

Converts an integer of typei nt to a character string in the specified base.

Syntax

#include <stdlib.h>

char *jtoa(int number, char *s, int base);
number Number to be converted

S Buffer to store the converted character string
base Theradix in which to express number

Description
Thei t oa function converts number to a null terminated character string, and stores that
result in s. The argument base specifies the radix in which number is to be expressed. The
value of base must be in the range 2 to 36. If base is less than 2 or greater than 36, i t oa
sets sto the null string.

An area large enough to hold the converted string must be allocated for s. The maximum
length of the string converted by i t oa, including the terminating null character, is 17 bytes.

Return value

Thei t oa function returns a pointer to the character string s.

See also

Itoa ultoa

Example
#i ncl ude <stdlib. h>
char buf[17];

voi d mai n(void)

{
}

itoa(12345, buf, 10);

2-28

Chapter 2, Standard Built-In Routines Reference

labs Function

Function

Returns the absolute value of an integer of typel ong.

Syntax
#include <stdlib.h>
long labs(long n);
n Integer
Description

Thel abs function returns the absolute value of the integer n of typel ong.

Return value

The | abs function returns an integer in the range O to 2147483647. However, if n is
—2147483648 it returns —2147483648.

See also

abs fabs

Example

#i ncl ude <stdlib. h>

voi d mai n(void)
{

| ong n, res;

n = -123456;

res = labs(n);
}

2-29

Chapter 2, Standard Built-In Routines Reference

ldexp Function

Function

Computes a real number from afraction and an exponent.

Syntax

#include <math.h>

double ldexp(doublex, int xexp);
X Floating point value

Xexp Integer exponent

Description

Thel dexp function computes the value x times 2 raised to the power xexp.

Return value

Thel dexp function returns the computed value x times 2 raised to the power xexp. It setsthe
global variable er r no to ERANGE if the result of the computation is too large to represent.

See also

exp frexp modf

Example
#i ncl ude <mat h. h>
voi d mai n(voi d)
{ doubl e x;
doubl e val
X = 4.5;
} val = I dexp(x, 5);

2-30

Chapter 2, Standard Built-In Routines Reference

ldiv Function

Function

Computes the quotient and remainder of two integers of type| ong.

Syntax

#include <stdlib.h>

Idiv_t Idiv(longint numer, long int denom);
numer Dividend

denom Divisor

Description
Thel di v function divides the argument numer by the argument denom and returns the result

in an object of typel di v_t . Thetypel di v_t hastwo eements of type | ong, quot and
rem andthel di v function storesthe quotient in quot and theremainder inr em

Return value

Thel di v function returns a structure that has quot (quotient) and r em(remainder) asits
members.

See also

div

Example

#i ncl ude <stdlib. h>

voi d mai n(void)
{
Idiv_t res;
| ong num den
| ong qgquot, rem
num = 165536;
den = 1000;
res = Idiv(num den);

quot = res. quot;
rem= res.rem

2-31

Chapter 2, Standard Built-In Routines Reference

log Macro/Function

Function

Computes the natural logarithm of a number x.

Syntax

#include <math.h>
double log(doublex);
X The value that is the object of the logarithm calculation.

Description

Thel og function calculates the natural logarithm of the argument x.

Return value

The | og function returns the calculated value, In(x). It sets the global variable er r no to
EDOM if the argument x is negative. It returns -HUGE_VAL if the argument x is zero, and
HUGE_VALE if the result is too large to represent. Sets er r no to ERANGE for both

these cases.
See also
exp logl0
Example
#i ncl ude <mat h. h>
voi d mai n(voi d)
{
doubl e x;

doubl e res;
X = 10;

res = log(x);

2-32

Chapter 2, Standard Built-In Routines Reference

log10 Macro/Function

Function

Computes the common logarithm of its argument.

Syntax

#include <math.h>
double 1og10(doublex);
X The value that is the object of the logarithm calculation.

Description

Thel 0g10 function calculates the base-ten logarithm of the argument x.

Return value

The | 0g10 function returns the calculated value. It sets the global variable er r no to
EDOM if the argument x is negative. It returns—HUGE_VAL if the argument X is zero, and
HUGE_VALE if the result is too large to represent. Sets er r no to ERANGE for both

these cases.
See also
exp log
Example
#i ncl ude <mat h. h>
voi d mai n(voi d)
{
doubl e x;

doubl e res;
X = 10;

res = 10gl0(x);

2-33

Chapter 2, Standard Built-In Routines Reference

longim Function
gjmp

Function

Syntax

Performs a global jump.

#include <setjmp.h>
void longjmp(jmp_buf environment , int value);

environment Areathat holds an execution environment
value The value that will be returned by set j np
Description

2-34

Thel ongj np function performs a global jump to the point where set j nmp was called.

Globa jumps can be performed by using the set j np and | ongj np functions. The
| ongj np function restores an execution environment saved in the argument environment
in advance by the set j np function. As aresult, the program appears to have returned from
set j nmp after | ongj np is called. The argument value becomes the return value from
set j np at the point the execution environment is restored.

The figure below shows the operation of set j mp and | ongj np using a simple example.
The program execution proceeds in the order [, [1, and then [].

wodd £ wodd)
i

O

:éﬁt-::::-t-:hﬁp.{mvj;
if ¢ Eet Iz o0)

=
: Fratomn & glob=sl jump bo e pdink
+ W s e WS Calked
@l Fm
The vabes 1 il 4 ras e
=Y PP

3 rabr mya b o s g

woid rE(woid)
i

]

longimp(snar , 1 45

Chapter 2, Standard Built-In Routines Reference

The value of value must be non-zero. The set j np will return one if zero is specified for
value.

The following points must be observed when using | ongj np. The operation of programs
that do not observe these points is undefined.

(1) An environment must be saved in advance by set j np beforecalling| ongj np.

(2) Thel ongj np function must not be called after the function that called set j np returns.

Return value

None

See also

setjmp

2-35

Chapter 2, Standard Built-In Routines Reference

Example

#i ncl ude <errno. h>
#i ncl ude <setjnmp. h>

voi d functionl(void);
voi d function2(void);

j mp_buf envi ronnent ;
voi d mai n(void)
{

i nt retval ;

retval = setjnp(environment);
if (retval '=0)
{

}

/* error process */

functionl()

functionZ();

}
voi d functionl(void)
{
i f (errno)
[ongj mp(environnent , 1);
}
voi d function2(void)
{
ff (errno)
| ongj mp(environnent , 2);
}

2-36

Chapter 2, Standard Built-In Routines Reference

Function

Function

Converts an integer of typel ong to acharacter string in the specified base.

#include <stdlib.h>

char *[toa(long number, char *s, int base);
number Number to be converted

s Buffer to store the converted character string
base Theradix in which to express number

Description

The | t oa function converts number to a null terminated character string, and stores that
result in s. The argument base specifies the radix in which number is to be expressed. The
value of base must be in the range 2 to 36. If base is less than 2 or greater than 36, then
| t oa setssto the null string.

An area large enough to hold the converted string must be allocated for s. The maximum
length of the string converted by | t oa, including the terminating null character, is 33 bytes.

Return value

Thel t oa function returns a pointer to the character string s.

See also

itoa ultoa

Example

#i ncl ude <stdlib. h>
char buf [33];

voi d mai n(void)

{
}

[toa(123456, buf, 10);

2-37

Chapter 2, Standard Built-In Routines Reference

malloc Function

Function

Allocates memory.

Syntax

#include <stdlib.h>
void *malloc(size t size);
size The size of the memory to allocate.

Description

mal | oc alocates size bytes of memory in the dynamic segment. Due to memory boundary
management considerations, each time mal | oc is called it may actually consume size + n
bytes of memory if sizeis even and size + (n + 1) bytes of memory if sizeisodd. (The value
of nis 2 for the small, effective medium, and medium memory models, and 4 for the com-
pact, effective large and large memory models.) The contents of allocated memory are not
initialized.

The dynamic segment is the largest area remaining after RL66K has allocated all logical
segments in the address space.

Return value

mal | oc returns apointer to the allocated memory. It returns NULL if the requested memory
could not be allocated or if size was zero.

See also
caloc free realloc

Note: When RL66K allocates the dynamic segment, it allocates an area that fills the data memory
defined in the DCL file, regardless of whether external RAM is present in the system or not.

Therefore, when the system has only internal RAM or an external RAM with a limited
capacity, mal | oc will not return an error (NULL) even if al the existent area is used due to
multiple callsto mal | oc. Thisis because the nal | oc function uses the size acquired from
the dynamic segment for memory management. Accordingly, normal operation cannot be
guaranteed in this case.

To prevent this problem, use the /DM option to specify the valid data memory area at link

time. For example, if the actual data memory capacity is only 7FFH bytes, specify
/DM (7FFH).

2-38

Chapter 2, Standard Built-In Routines Reference

Example

#i ncl ude <stdlib. h>

#i ncl ude <string. h>
voi d mai n(void)
{

char *s;

if ((s =(char * Ymalloc(10)) !'= NULL)
{

}

strcpy(s, "sanple");

2-39

Chapter 2, Standard Built-In Routines Reference

memchr Function

Function

This function searches for a specified data byte in a specified memory area.

Syntax

#include <string.h>

void *memchr(void *region , int ¢, size t count);

region Pointer to amemory area

C Datum to be searched for

count Number of bytes over which to search
Description

The menthr function searches for an occurrence of ¢ in the first count bytes of region.
Although cisof typei nt , it must have avalue in the range 0x00 to Oxff.

Return value

The menthr function returns a pointer to the first occurrence of ¢, if ¢ occurs within the
first count bytes of region. It returns NULL if ¢ is not found. It also returns NULL if count
isO.

See also

memcmp memcpy memset strchr

2-40

Chapter 2, Standard Built-In Routines Reference

Example
#i ncl ude <string. h>

char data[16] =
{
0x00, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70,
0x80, 0x90, 0xa0, 0xb0, 0xc0, 0xd0, Oxe0, OxfO

s
voi d mai n(void)
{
char *ptr;
[* This call returns the addresses of data[8]. */
ptr = menchr(data , 0x80 , 16);
/* This returns NULL since there is no byte with the
val ue Oxff. */
ptr = nenchr(data , Oxff , 16);
/* This returns NULL since there is no byte with the
value 0x80 in the first 4 bytes. */
ptr = nmenchr(data , 0x80 , 4);
}

2-41

Chapter 2, Standard Built-In Routines Reference

memcmp Function

Function

This function compares two memory areas.

Syntax

#include <string.h>

int memcmp(void *regionl, void *region2 , size t count);
regionl Memory area 1
region2 Memory area 2
count Number of bytesto compare
Description

The mentnp function compares the first count bytes of regionl and region2 on a byte by
byte basis. Unlike the st r cimp function, this function continues to compare beyond occur-
rences of the null character ('¥0').

Return value

The table below lists the return values according to the result of the comparison.

Return value Comparison result

0 regionl and region2 areidentical.

Positive regionl islarger than region2.

Negative regionl is smaller than region2.
See also

memchr memcpy memset strcmp

2-42

Chapter 2, Standard Built-In Routines Reference

Example

#i ncl ude <string. h>

char buf1[16] = {0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15} ;
char buf2[16] = {0,1,2, 3,4,5,6,7,8,9,10,11, 12, 13, 14, 15} ;
char buf3[16] = {0,1,2, 3,4,56,7,8,9,10, 1, 2, 3, 4, 5}:

voi d mai n(void)

{
i nt ret;
/* This returns 0 since the contents of the conpared areas are
identical. */
ret = mencnp(bufl , buf2 , 16);
/* This returns a positive value since the first argunent is
larger. */
ret = mencnp(bufl , buf3 , 16);
/* This returns a negative value since the second argunment is
| arger. */
ret = mencnp(buf3 , buf2 , 16);
}

2-43

Chapter 2, Standard Built-In Routines Reference

memcpy Function

Function

This function copies datain one memory area to another

Syntax

#include <string.h>

void *memcpy(void *dest , void *src, size_t count);
dest Copy destination

src Copy source

count Number of bytesto copy

Description

The menmcpy function copies count bytes from src into dest. Unlike st r cpy and
st rncpy, these function will copy bytes containing the null character ('¥0').

The behavior is undefined if the source and destination areas overlap. Use the nenmove
function to copy overlapping aress.

Return value

Thementopy function returns dest.

See also

memchr memcmp memmove memset strcpy strnepy

2-44

Chapter 2, Standard Built-In Routines Reference

Example

#i ncl ude <string. h>

char datal[16] =

{
0x00 , 0x10 , 0x20 ,

0x80 , 0x90 , OxaO ,
¥
char dat a2[16] ;
voi d mai n(void)

{

char *retptr;

retptr =

0x30 ,
0xbO0

0x40
0xcO ,

= mencpy(data2 , datal ,16);

0x50 ,
0xdo

0x60
0Oxe0 ,

0x70 ,
0xf O

2-45

Chapter 2, Standard Built-In Routines Reference

memmove Function

Function

Copiesthe datain one memory areato another.

Syntax

#include <string.h>

void *memmove(void *dest , void *src, size t count);
dest Copy destination

src Copy source

count Number of bytesto copy

Description

The menmmmove function copies count bytes from src into dest. Unlike st r cpy and
st r ncpy, these function will copy bytes containing the null character (¥0).

Return value

The menmov e function returns dest.

See also

memcpy strcpy strncpy

2-46

Chapter 2, Standard Built-In Routines Reference

Example
#i ncl ude <string. h>
char data[] =
{
0x00 , 0x01 , 0Ox02 , 0x03 , 0Ox04 , Ox05 , 0x06 , 0x07
0x08 , 0x09 , Ox0a , OxOb , 0OxOc , 0Ox0d , Ox0e , OxOf |,
0x10 , 0x11 , Ox12 , Ox13 , Ox14 , Ox15 , 0Ox16 , 0x17 ,
0x18 , 0x19 , Oxla , Oxlb , Oxlc , Oxld , Oxle , Ox1if |,
0x20 , 0x21 , 0x22 , 0x23 , 0x24 , 0x25 , 0x26 , 0x27
0x28 , 0x29 , Ox2a , Ox2b , 0x2c , Ox2d , Ox2e , Ox2f
s
voi d mai n(void)
{
/* Copies 32 bytes of data starting at data + 16 to
the menory area starting at data.
Perforns the copy correctly, even though the areas
overlap. */
nmermove(data , data+l16 , 32);
}

2-47

Chapter 2, Standard Built-In Routines Reference

memset Function

Function

Initializes a specified area of memory with a given data byte.

Syntax

#include <string.h>

void *memset(void *region, int ¢, size t count);
region Memory area

c Data byte to be stored in memory.

count Number of bytes

Description

Themenset function initializes the first count bytes of region to the value c. Although cis
of typei nt , it must have avaluein the range 0x00 to Oxff.

Return value

Thenmenset function returnsregion.

See also

memchr memcpy memcmp memmove

Example
#i ncl ude <string. h>
char ram dat a[64] ;
voi d mai n(void)
{
char *retptr;
/* Initializes the first 32 bytes of the buffer ramdata
with Oxff. */
retptr = menset(ramdata , Oxff , 32);
}

2-48

Chapter 2, Standard Built-In Routines Reference

modf Function

Function

Breaks a floating point number into its integer and fraction parts.

Syntax

#include <math.h>

double modf(double x, double *pint);

X Floating point value

pint Pointer to location to hold the integer part.

Description
The nmodf function breaks its floating point argument X into integer and fractional parts,

stores the integer part of x at the location pointed to by pint, and returns the fraction part as
the value of the function.

Return value

The nodf function returns the fraction part of its argument x with the sign.

See also

fmod frexp Idexp

Example
#i ncl ude <nat h. h>
voi d mai n(voi d)
{
doubl e x;
doubl e pint;
doubl e frac;
x = 10. 2;
frac = nmodf (x, &pint);
}

2-49

Chapter 2, Standard Built-In Routines Reference

offsetof Macro

Function

Determines the offset of afield in astructure.

Syntax

#include <stddef.h>
size t offsetof(structname, fieldname);
structname structure name

fieldname member of structure

Description

The of f set of macro determines the offset of the field fieldname in the structure struct -
name as a number of bytes.

Return value

The of f set of macro returns the offset of the field fieldname in the structure structname
as anumber of bytes.

Example
#i ncl ude <st ddef . h>

typedef struct{
int rmenberl;
| ong nmenber 2;
char nemnber 3;
} structnane;

voi d mai n(void)
{
size t retl;
size t ret2;
size t ret3;

retl = offsetof (structnane, nenberl);
ret2 = offsetof (structnane, nmenber2);
ret3 = offsetof(structnane, nenber3);

2-50

Chapter 2, Standard Built-In Routines Reference

pow Function

Function

Computes x raised to the y power.

Syntax

#include <math.h>

double pow(double x, doubley);

X Numeric value
y The exponent to which x is to be raised.
Description

The pow function computes x raised to the y power.

Return value

The pow function returns the computed value of x raised to the y power. There are cases
where, depending on the values of the arguments, either overflow occurs or the calculation
cannot be performed. On overflow, the pow function returns HUGE_VAL and sets the
global variable er r no to ERANGE. If x is negative and y is not an integer, pow sets
errno to EDOM. powreturns 1 if both x and y are zero.

See also
exp sart
Example
#i ncl ude <mat h. h>
voi d mai n(voi d)
{
doubl e x;
doubl e v;
doubl e val
x = 2.0;
y = 3.0;
val = pow(x, y);
}

2-51

Chapter 2, Standard Built-In Routines Reference

qsort Function

Function

Sorts an array using the Quicksort algorithm.

Syntax

#include <stdlib.h>

void gsort(void *base, size tn, size t size, int (*cmp)(void *, void *));
base The start of the array to be sorted

n The number of elementsin the array

size The size of each element

cmp A pointer to a comparison function

Description

Thegsort function sortsan array using the Quicksort dgorithm. Theqgsort function sorts
the lements in the array by calling the user defined comparison function pointed to by cmp.

The function *cmp is a user-specified comparison function that must take as its arguments
two voi d pointers (void *). If these two arguments are eleml and elem2, the function must
return the following integers based on the result of the comparison.

Condition Return Value
*eleml < *elem2 Negative
*eleml == *elem2 0

*eleml > *elem?2 Positive

Return value

None

See also

bsearch

2-52

Chapter 2, Standard Built-In Routines Reference

Note: The comparison function must have the __noacc modifier. Without this modifier, compiling
with CC665S's /REG option causes the function to take its first argument from the accumu-
lator instead of the stack, where gsort() placesit.

For further details, see the sections “/REG Option” and “Functions Modified with __accpass
and __noacc” in the CC665S User’'s Manual.

Example

#i ncl ude <stdlib. h>

int _ noacc conpare(int *, int *);
int base[] = {12, 23, 15, 128, 43, 25};

voi d mai n(void)

{ gsort(base, 6, sizeof (int), conpare);
}

int _ _noacc conpare(int *eleml, int *elenR)
: return (*eleml - *elen?);

2-53

Chapter 2, Standard Built-In Routines Reference

rand Function

Function

Generates pseudo-random numbers.

Syntax

#include <stdlib.h>
int rand(void);

Description

Ther and function generates a pseudo-random number in the range 0 to RAND_MAX and
returns that value.

Return value

Ther and function returns a pseudo-random number.

See also

srand

Example
#i ncl ude <stdlib. h>

i nt randonf 20];

voi d mai n(void)
{
int i;
for (i =0; i < 20; ++i)
randonfi] = rand();
}

2-54

Chapter 2, Standard Built-In Routines Reference

realloc Function

Function

Reallocates memory.

Syntax

#include <stdlib.h>

void *realloc(void *ptr, size tsize);

ptr Pointer to the memory to be reallocated
size Allocation size

Description
real | oc reallocates memory that was allocated by cal | oc or mal | oc.
real | oc allocates memory of the requested size and returns a pointer to that memory. If
new memory was actually allocated, the content of the origind memory is copied to the

allocated memory. r eal | oc functions identically to mal | oc if ptr is NULL. If sizeisO
and ptr isnot NULL, r eal | oc freesthe memory pointed to by ptr.

Return value

real | oc returns a pointer to the reallocated memory. r eal | oc returns NULL if it could
not reallocate memory.

See also

caloc free malloc

2-55

Chapter 2, Standard Built-In Routines Reference

Example

#i ncl ude <stdlib. h>
#i ncl ude <string. h>
" library ";

reference. ";

char stringl[]
char string2[]

voi d nmai n(void)

{
char *sl, *s2;
sl = (char *)malloc(strlen_c(stringl) + 1);
strcpy(sl1, stringl);
/* Reallocates menory.
The contents of sl at this point is copied into s2.
*/
s2 = (char *)realloc(s1, strlen(s1) + strlen(string2) + 1);
/* Concatenate s2 and string2. */
strcat(s2, string2)
/* The contents of s2 is now "library reference."*/
}

2-56

Chapter 2, Standard Built-In Routines Reference

setjmp Macro

Function

Saves the current program execution environment for the global jump function.

Syntax

#include <setjmp.h>
int setjmp(jmp_buf environment);
environment Areato hold the execution environment

Description

The set j np macro saves the current program execution environment in environment.
Global jumps can be performed by using the set j np and | ongj np functions. The
| ongj np function restores an execution environment saved in the argument environment
in advance by the set j np function. As aresult, the program appears to have returned from
setj np after | ongj np iscalled.

Although the set j np macro returns zero when it is called to save the environment, it
returns a value other than zero (the argument to | ongj np) when the environment is
restored by a call to | ongj np. Thus the program that calls the set j np macro can deter-
mine whether it has just saved the environment, whether the environment has been restored

by | ongj np, or even from which | ongj np the environment has been restored by refer-
encing this return value.

Return value
The set j mp macro aways returns zero when it is called to save the environment. When

setj np returnsas aresult of acall tol ongj np, it returns the non-zero value that was the
value of the second argument (value) to | ongj np.

See also

longjmp

Example

See the example under | ongj np.

2-57

Chapter 2, Standard Built-In Routines Reference

sin Macro/Function

Function

Computes the sine of its argument.

Syntax

#include <math.h>
double sin(doublex);
X Ananglein radian units

Description

Thesi n routine computes the sine of its argument x.

Return value

Thesi n routine returns the sine of its argument x.

See also

acos asin atan atan2 cos tan

Example
#i ncl ude <mat h. h>
voi d mai n(voi d)
{ doubl e x;
doubl e res;
x = 0.5;
} res = sin(x);

2-58

Chapter 2, Standard Built-In Routines Reference

sinh Function

Function

Computes the hyperbolic sine of its argument.

Syntax

#include <math.h>
double sinh(doublex);
X An anglein radian units

Description

The si nh function computes the hyperbolic sine (ex— eX)/2 of its argument.

Return value
The si nh function returns the hyperbolic sine of its argument x.

If the result is too large to represent, si nh returns HUGE_VAL with an appropriate sign
and setsthe global variable er r no to ERANGE.

See also

acos asin atan atan2 cos cosh sin tan tanh

Example
#i ncl ude <mat h. h>
voi d mai n(voi d)
doubl e x;
doubl e res;
x = 0.5;
res = sinh(x);
}

2-59

Chapter 2, Standard Built-In Routines Reference

sprintf Function

Function

This function writes text to a character string according to aformat specification.

Syntax

#include <stdio.h>

int sprintf(char *buffer, char *format [, argument, ...]);
buffer Buffer to hold the output character string
format Format string

argument Argument corresponding to a conversion type specifier

Description

Thesprintf function creates a character string according to the format string pointed to
by format, and write that string to buffer.

The format argument consists of normal characters and an arbitrary number of conversion
specifiers. The number and types of the arguments following format must match the num-
ber of conversion specifiers and the types specified by each conversion specifier in format.
The behavior is undefined if the number of argumentsis smaller than the number of conver-
sion specifiers or if the type specified by a conversion specifier does not match the type of
the corresponding argument. Extra arguments are ignored if the number of arguments
exceeds the number of conversion specifiers.

Conversions specifiers have the following syntax.

% [flags] [width] [.prec] [{h|l|L}] type

A sequence of flag characters is specified in the flags field. The conversion field width is
specified in the width field. The precision is specified in the .prec field. Thetermsh, | , and
L aretype length specifiers. The conversion type specifier is specified in the type field.

The flags, field width, precision, and type length are optional. The table that follows pro-
vides an overview of these options.

2-60

Chapter 2, Standard Built-In Routines Reference

Option Meaning

flags The flags specify aspects such as | eft justification or right justification,
and the sign, decimal point, or base (octal or hexadecimal) for numer-
ic values.

width Specifies the minimum width of the characters output.

.prec Specifies the maximum width of the characters output. Specifies the
minimum number of digits output for integers.

{h]|L} Determines the size of the corresponding argument.

h shortint
I long
L long double

Conversion Type Specifier (type)

Thistable lists the conversion type specifiers.

Conversion Type

Spexifier Type Output Format

d,i int Converts to a signed decimal character string.

o] unsigned int Converts to an unsigned octal character string.

u unsignedint Convertsto an unsigned decimal character string.

X unsignedint Converts to an unsigned hexadecimal character string. The
values 10, 11, 12, 13, 14, and 15 are converted to a, b, c, d, e,
and f respectively.

X unsigned int Converts to an unsigned hexadecimal character string. The
values 10, 11, 12, 13, 14, and 15 are converted to A, B, C, D,
E, and F respectively.

f double Convertsto asigned format of the form [-] d.dddddd.

e double Convertsto asigned format of the form [-] d.dddddde+/—dd.

E double The same as '€, except that the exponent isindicated by 'E'.

g double Converts to the format specified by either e or f. Normally
expresses values in the f format. However, expresses valuesin
the e format if the exponent islessthan —4 or if it islarger than
the conversion field precision.

G double The same as g, except that it converts to the format specified
by either E or f.

int Convertsto asingle character.

char * Outputs characters from the character string pointed to by the
corresponding argument up to the conversion field precision
or until the end of that string. The pointer must point to a
character string in RAM.

S constchar* The same as s, except that the pointer points to a character
string in ROM.

p void * Outputs the input argument as a pointer.

n int* Stores the number of characters output thus far into the object

%

pointed to by the corresponding argument.
Outputs a'%' character.

2-61

Chapter 2, Standard Built-In Routines Reference

The output formats described in the table assume that flag characters, a width specifier, a
field precision width, and a type length were not specified. The remainder of this section
describes the influence of combinations of options and conversion type specifiers on the
output format.

Flag Characters (flags)

2-62

The following flag characters are supported.

Flag Character Description

- Justifies the output character string to the |eft edge of the field. If not
specified, the string isright justified.

+ Always attaches a sign at the start of a number. If not specified, asign
character is only output for negative values.

Space (0x20) Inserts a space at the front of positive numbers. A minus sign is output
at the start of a negative number.

Appliesto conversion type specifiers for numeric data types. Allocates
an appropriate format corresponding to the conversion type specifier.
See the following table.

0 If a0 precedes one of thed, e, E, f, g, G, i, u, X, or X conversion type
specifiers, the field is filled with zeros instead of spaces. The'0' flag is
ignored if a precision is specified for d, i, o, u, X, or X conversions or
if the ' flag is specified.

Conversion type specifiers are modified by the presence of the '# flag as shown in the fol-
lowing table.

Conversion Type Specifier Influence of the'# Flag

¢ di,usS No effect

o] A zero isinserted at the beginning of the number for non-zero
values.

X, X A 'Ox' prefix isinserted.

e E,f A decimal point is always inserted.

ag,.G A decimal point is always inserted, and a zero is inserted fol-

lowing the decimal point.

Chapter 2, Standard Built-In Routines Reference

Field Width (width)

The field width specifies the minimum width of the field into which the converted character
string iswritten.

When afield width is specified, if the converted string is shorter than the field width, then it
is padded with spaces up to the size of the width. The padding spaces are inserted at the
right if the '— flag is specified, and at the left otherwise. Also, if the first character in the
field width specification is '0', then the field is padded with zeros instead of spaces. If the
converted string is longer than the field width, then the field width is increased to the length
of the converted string.

It is possible to specify the field width indirectly with an asterisk (*). In this case, the
field width will be taken from an argument of type i nt . For example, if the following
notation is used,

char buf [20];

i nt width = 8;

i nt nunmber = 1234;

sprintf(buf," |%d|" , wdth, nunber);

then the argument will be used as the field wi dt h and the following character string will
be output to buf .

| 1234

Precision (.prec)

The precision specifier starts with a period. The precision syntax is the same as that for the
field width. The precision is taken to be zero if only a period with no following number is
specified.

The number of characters output when the precision is specified differs for each conversion
type specifier. The table below lists the operation when a precision of nis specified.

Conversion Type Specifier Output

d i, o u x, X At least n digits are output.

e E,f Exactly n digits are output following the decimal point.
0, G No more than n significant digits are output.

s, S No more than n characters are output.

2-63

Chapter 2, Standard Built-In Routines Reference

Type Length Specifier

The type length specifier changes the type of the corresponding argument.

Type Length Specifier Size

h For the d, i, 0, u, X, and X conversion type specifiers, indicates that
the corresponding argument is of type short i nt or unsi gned
short int.

| For the d, i, 0, u, x, and X conversion type specifiers, indicates that
the corresponding argument is of type | ong i nt or unsi gned
long int.
For the e, E, f, g, and G conversion type specifiers, indicates that the
corresponding argument is of typedoubl e.

L For the g, E, f, g, and G conversion type specifiers, indicates that the
corresponding argument is of typel ong doubl e.

Return Value

The spri ntf function returns the number of bytes output to buffer. If an error occurs,
sprintf returns EOF.

See also

sscanf

Example

#incl ude <stdio. h>
#include <string.h>

char buf 1[128] ;
char buf 2[128] ;
char string[20];

i nt resi;

i nt res2;

voi d mai n(void)
{

resl = sprintf(bufl, "|%l| %ix| Y%04X| %-12.4f|",
10, Oxabc, OxAB, 1234.567);

strcpy(string, "RAM string");
res2 = sprintf(buf2, "|%15s|9%5S", string, "ROM string");

2-64

Chapter 2, Standard Built-In Routines Reference

sqrt Function

Function

Computes the square root of its argument.

Syntax

#include <math.h>
double sgrt(double x);
X A non-negative floating point value

Description

Thesqrt function computes the square root of its argument x.

Return value

The sqrt function returns the computed value of the square root of its argument x. It sets
the global variable er r no to EDOM if x is negative, and to ERANGE if the result is too
large to represent.

See also
exp log pow
Example
#i ncl ude <mat h. h>
voi d mai n(voi d)
{ doubl e x;
doubl e val ;
x = 9.0;
} val = sqgrt(x);

2-65

Chapter 2, Standard Built-In Routines Reference

srand Macro/Function

Function

Initializes the pseudo-random number sequence.

Syntax

#include <stdlib.h>
void srand(unsigned int seed);
seed Initialization value

Description

The sr and function initializes the pseudo-random number sequence. The pseudo-random
number sequence generated by r and can be changed by using a different value for seed.

Return value

None

See also

rand

Example
#i ncl ude <stdlib. h>
i nt randonf 20];
voi d mai n(void)
{
int i;
srand(123);

for (i =0; i < 20; ++i)
randonf{i] = rand();

2-66

Chapter 2, Standard Built-In Routines Reference

sscanf Function

Function

Syntax

This function reads in a character string and convert it to appropriate data types according
to aformat string.

#include <stdio.h>

int sscanf(char *string, char *format [, address, ...]);

string Character string to be read in (input string)

format Format string

address Arguments corresponding to the conversion specifiers
Description

Thesscanf function reads characters from the string pointed to by string, convert them to
appropriate types according to the format string pointed to by format, and store the results
in the locations pointed to by the corresponding address arguments.

The format string consists of white space, conversion specifiers, and characters other than
the percent character (%). When the sscanf function encounters a white space character-
istic in the format string, it jumps over all space characters until it encounters a character
other than space. A conversion specifier starts with a percent character (%) and specifies
how a section of the input string is to be interpreted. When the sscanf function encoun-
ters a conversion specifier, it acquires a corresponding token from the input string. For all
other characters, sscanf reads over matching charactersin the input string.

The number of conversion specifiers and the number of arguments following format must
be identical. The behavior is undefined if the number of argumentsis smaller than the num-
ber of conversion specifiers. Extra arguments are ignored if the number of arguments
exceeds the number of conversion specifiers. Also, the type required by each conversion
specifier must match the type of its corresponding argument. The behavior is undefined if
they do not match.

Conversion specifiers have the following syntax.

% [*] [width] [{h[l[L}] type

2-67

Chapter 2, Standard Built-In Routines Reference

An asterisk (*) indicates that the next field (token) is to be jumped over. Nothing is written
into the corresponding argument. The width item specifies the maximum number of charac-
ters (the input width) in the input field. An h, |, or L is atype length specifier, and modifies
the type of the argument. The type is the conversion type specifier.

The asterisk, input width, and type length items are optional .

Conversion Type Specifier

The table below lists the conversion type specifiers. This table lists the argument type and
the interpretation of the string read for each conversion type specifier.

Conversion Type Argument

Specifier

Type

Input String Interpretation

di

X, X

e E

9G

int*

unsigned int *

unsigned int *

unsigned int *

float *

float *

float *

char *

Converts a decimal character string to an integer. The format
of the string must be the same as a string interpreted by the
strtol functionwhen abase of 10 is specified.

Converts an octal character string to an integer. The format of
the string must be the same as a string interpreted by the
strtol function when abase of 8 is specified.

Converts an unsigned decimal character string to an unsigned
integer. The format of the string must be the same as a string
interpreted by the strt oul function when a base of 10 is
specified.

Converts a hexadecimal character string to an unsigned inte-
ger. The format of the string must be the same as a string
interpreted by the st rt ol function when a base of 16 is
specified.

Converts a character string to floating point. The format of the
string must be the same as a string interpreted by the st r t od
function when converting a decimal expression to floating
point.

Converts a character string to floating point. The format of the
string must be the same as a string interpreted by the st r t od
function when converting an exponential expression to float-
ing point.

Converts a character string to floating point. The format of the
string must be the same as a string interpreted by the st r t od
function when converting either a decimal expression or an
exponential expression to floating point.

Copies the number of characters specified by the field width to
the array specified by the argument. Note that white space
characters are included. A terminating null character (¥0') is
not written by this operation. If the field width is not specified,
asingle character isread.

2-68

Chapter 2, Standard Built-In Routines Reference

Conversion Type Argument . .
v yp u Input String I nterpretation

Specifier Type

s char * Copies a character string that includes no space characters to
the character string specified by the argument. A terminating
null character ("*¥0') is written at the end of the string.

p void * Reads a character string as a pointer to typevoi d.

n int* Stores the number of characters read so far in the area pointed
to by the argument.

% — Reads a percent (%) character. Does not set the corresponding
argument.

[..] char * Copies characters that match any of the characters in the char-
acter set enclosed in square brackets to the string pointed to by
the argument. The space character can aso be included in the
character set. The syntax "[],...]" specifies that the character
"I" isincluded in the character set that is the object of the scan.

[~ char * Copies characters that do not match any of the characters in

the character set enclosed in square brackets to the string
pointed to by the argument. The space character can aso be
included in the character set. The syntax "[*],...]" specifies that
the character "]" isincluded in the character set that is exclud-
ed from the object of the scan.

The argument types in the preceding table assume that a type length was not specified. The
changes that occur in the types due to type length specifications are described next.

Type Length Specifier

The table below shows how the type length changes the type of the corresponding argument.

Type Length Specifier Type Interpretation

h For conversion type specifiers d, i, o, u, x, and X, the corresponding
argument is interpreted as a pointer to short i nt or unsi gned
short i nt.The h type length specifier isignored for other conver-
sion type specifiers.

For conversion type specifiers d, i, o, u, x, and X, the corresponding
argument is interpreted as a pointer to | ong i nt or unsi gned
long int.

For conversion type specifiers e, E, f, g, and G, the corresponding
argument is interpreted as a pointer to doubl e. The | type length
specifier isignored for other conversion type specifiers.

L For conversion type specifiers e, E, f, g, and G, the corresponding
argument is interpreted as a pointer to | ong doubl e. The L type
length specifier isignored for other conversion type specifiers.

2-69

Chapter 2, Standard Built-In Routines Reference

Return value

The sscanf function returns the number of correctly read input data items. It returns EOF
if an error occurred.

See also

sprintf

Example

#i ncl ude <stdio. h>

int year, nonth, date;
char name[15] ;

float height;

i nt res;

voi d mai n(void)
{
res = sscanf("1993.11.17 , T.YAMADA , 170.5", "%l.%. % , % , %",
&year, &month, &date, name, &height);

2-70

Chapter 2, Standard Built-In Routines Reference

strcat Function

Function

This function concatenates character strings.

Syntax

#include <string.h>

char *streat(char *stringl , char *string2);

stringl The destination character string
string2 The character string to be concatenated
Description

The strcat function concatenates string2 starting at the null character (¥0") that termi-
nates stringl. It adds a terminating null character ("¥0") at the end of the resultant string.

Return value

Thestrcat function returns stringl.

See also

strncat strcpy strncpy

2-71

Chapter 2, Standard Built-In Routines Reference

Example

2-72

#i ncl ude <string. h>

char stringl[128] = "library ";

char string2[128] = "reference ";

voi d mai n(void)

{
char *retptr;
/* Creates the character string "library reference". */
retptr = strcat(stringl , string2);
/* Creates the character string "library reference manual ".
retptr = strcat(retptr , "nmanual");

}

*/

Chapter 2, Standard Built-In Routines Reference

strchr Function

Function

This function searches for the first occurrence of a character in a string.

Syntax

#include <string.h>

char *strchr(char *string, int ¢);
string Character string

c Character to be found

Description

The st r chr function searchesfor c in string. The null character ("¥0") can be specified for
c. Although the argument cis of typei nt , it must have a value in the range 0x00 to Oxff.

Usethefunction st r r chr to find the last occurrence of ¢ in astring.

Return value

The st r chr function returns a pointer to the location where the character first appears. It
returns NULL if the character is not found.

See also

memchr strcspn strrchr strspn

2-73

Chapter 2, Standard Built-In Routines Reference

Example
#i ncl ude <string. h>
char string[] = "012345678901234567890123456789"
voi d mai n(void)
{
char *ptr;
/* Since the first occurrence of '9" is at entry 9, */
/* this function returns pointers to string[9] */
ptr = strchr(string , '9");
/* When '¥0' is specified, this function returns
pointers to the end of the string. */
ptr = strchr(string , '¥0');
/* This call returns NULL since the letter 'A does not
occur in the strings. */
ptr = strchr(string , "A);
}

2-74

Chapter 2, Standard Built-In Routines Reference

stremp

Function

Function

This function compares two character strings.

Syntax

#include <string.h>

int stremp(char *stringl , char *string2);

stringl String to be compared

string2 String to be compared
Description

The st r cnp function compares the alphabetical order of stringl and string?2.

Return value

The table below lists the return values and their meanings.

Return Value Meaning

0 stringl and string2 are identical.

Positive stringl islarger than (later in alphabetical order than) string2.

Negative stringl is smaller than (earlier in alphabetical order than) string2.
See also

memcmp strncmp

2-75

Chapter 2, Standard Built-In Routines Reference

Example
#i ncl ude <string. h>

/* stringl is larger than string2. */
char stringl[] = "ABCDE"
char string2[] = "AAAAA"

voi d mai n(void)

{

int retval

/* Returns a positive value since the first string is
| arger. */
retval = strcnp(stringl , string2);

/* Returns a negative value since the second string is
| arger. */
retval = strcnp(string2 , stringl);

/* Returns zero since the strings are identical. */
retval = strcnp(stringl , stringl);

2-76

Chapter 2, Standard Built-In Routines Reference

strcpy Function

Function

This function copies character strings.

Syntax

#include <string.h>
char *strepy(char *stringl , char *string2);

stringl Copy destination
string2 Source string to be copied
Description

The st r cpy function copies string2, including the terminating null character ("¥0") into
stringl.
Return value

The st r cpy function returns stringl.

See also

memcpy strcat strncat strncpy

Example

#i ncl ude <string. h>
char string[128];
voi d mai n(void)

{

char *retptr;

retptr = strcpy(string , "string data");

2-77

Chapter 2, Standard Built-In Routines Reference

strcspn Function

Function

Syntax

This function determines the length of the first section of a string that does not contain any
characters from a given character set.

#include <string.h>
size t strespn(char *stringl, char *string2);

stringl Character string
string2 Character set specified as a character string
Description

Return

The st rcspn function searches in stringl for the first occurrence of a character from
string2, and returns the offset of that point from the start of stringl. In other words, it deter-
mines the length of the starting section of stringl that consists of characters not contained
in string2. The terminating null character (*¥0") in stringl is not included in the search
range.

This function is very similar to st r pbr k. However, it differsin that st r pbr k returnsa

pointer to the first character that appears. Note that a function with the opposite functionali-
ty, thest r spn function, is also provided.

value

The st r cspn function returns the length of the substring from the start of stringl to the
point where the first character in string2 appears.

This function returns the length of stringl when none of the characters in string2 appear in
stringl or when string2 is the null string (*").

See also

2-78

strchr strrchr strpbrk strspn

Chapter 2, Standard Built-In Routines Reference

Example
#i ncl ude <string. h>
char stringl[] = "ABCDEFGL234567";
char string2[] = "1234567";
voi d mai n(void)
{
size t retval
| *
This call returns 7 since there are 7 characters in
the string "ABCDEFGL234567" that precede the
appearance of one of the characters in "1234567".
*/
retval = strcspn(stringl , string2);
[*
This call returns the Iength of the string "ABCDE
FG1234567", since none of the characters "XYZ"
appears in the string.
*/
retval = strcspn(stringl , "XYZ");
}

2-79

Chapter 2, Standard Built-In Routines Reference

strlen Function

Function

This function computes the length of a character string.

Syntax

#include <string.h>
size t strlen(char *string);
string Character string
Description
The st r| en function determines the length of string, that is the number of characters

(bytes) from the start of the string through the character directly preceding the terminating
null character ('¥0).

Return value

The st r | en function returns the length of string.

See also

None

2-80

Chapter 2, Standard Built-In Routines Reference

Example

#i ncl ude <string. h>

char string[] = "ABCDEFGHI JKLMNOPQRSTUWKYZ" ;

voi d mai n(void)

{

size t length;

/*
This call returns 26, which is the length of the
string.

*/

length = strlen(string);

2-81

Chapter 2, Standard Built-In Routines Reference

strncat Function

Function

This function appends the first section of one character string onto the end of another.

Syntax

#include <string.h>

char *strncat(char *stringl , char *string2 , size t count);

stringl Destination character string

string2 Character string to be appended

count Number of characters to be appended
Description

The st rncat function appends the first count bytes of string2 to stringl starting at
string1’s terminating null character (*¥0"). It adds a terminating null character ('¥0") to the
result string.

All of string2 is appended to stringl if count is greater than the length of string2. This oper-

ation is the same as that performed by the st r cat function. The contents of stringl will
not be changed if count is zero or if string2 isthe null string.

Return value

Thest r ncat function returns stringl.

See also

strcat strcmp strcpy strncpy

2-82

Chapter 2, Standard Built-In Routines Reference

Example
#i ncl ude <string. h>
char stringl[{128] = "library ";
char string2[128] = "reference ";
char string3[128] = "nmanual "
voi d mai n(void)
{
char *retptr;
/*
Concatenates the first three characters of
"reference".
The contents of the string then becones "library
ref".
*/
retptr = strncat(stringl , string2 , 3);
/*
A count larger than the length of the string "nmanual"
is specified.
The contents of the string then beconmes "library ref
manual ".
*/
retptr = strncat(retptr , string3 , 20);
/*
A character count of 0 is specified. The contents of
the string is not changed.
*/

retptr = strncat(retptr , string3 , 0);

2-83

Chapter 2, Standard Built-In Routines Reference

strncmp Function

Function

This function compares the specified number of charactersin two character strings.

Syntax

#include <string.h>

int strncmp(char *stringl , char *string2 , size t count);

stringl Character string to be compared

string2 Character string to be compared

count Number of charactersto be compared
Description

The st r ncnp function determines the alphabetical order of first count bytes of stringl and
string2.

When count is smaller than the length of the strings being compared, then the first count
bytes from the start of the strings form the range of the comparison. When count is larger
than the length of the strings, then the strings up to the terminating null character (¥0") form
the range of the comparison. The result of st r ncrp when count is larger than the length
of either stringl or string2 is the same as the result of the strcmp function.

Return value

The table below lists the return values and their meanings.

Return ValueMeaning

0 stringl and string2 are identical.

Positive stringl islarger than (later in alphabetical order than) string2.

Negative stringl is smaller than (earlier in alphabetical order than) string2.
See also

memcmp strcat strcmp strepy strncat strncpy

2-84

Chapter 2, Standard Built-In Routines Reference

Example
#i ncl ude <string. h>

/* stringl is larger than string2 starting at the seventh byte. */
const char stringl[] = "1234567890";
const char string2[] = "1234560000";

voi d mai n(void)

{

int retval;

/* A conparison up to the sixth byte. The result is zero. */
retval = strncnp(stringl , string2 , 6);

/* A conparison up to the seventh byte. Since the first string

is larger, the result is a positive value. */
retval = strncnp(stringl , string2 , 7);

2-85

Chapter 2, Standard Built-In Routines Reference

strncpy Function

Function

This function copies the specified number of bytes.

Syntax

#include <string.h>

char *strnepy(char *stringl , char *string2 , size_t count);

stringl Copy destination

string2 Source character string

count Number of charactersto be copied
Description

Thest r ncpy function copiesthe first count bytes of string2 into stringl.
If count is equal to or less than the length of string2, no terminating null character (‘¥0') is
added to the copied string. If count is longer than string2, then all of string2 is copied into

stringl, and furthermore, stringl is padded with null characters through character number
count.

Return value

Thest r ncpy function returns stringl.

See also

memcpy strcat strncat strcpy

2-86

Chapter 2, Standard Built-In Routines Reference

Example
#i ncl ude <string. h>
char stringl[] = "string";

char string2[128];

voi d mai n(void)

{

char *retptr;

/*
Examples with a string of length 6 and a count of 3.
Only the first 3 characters are copied. No null
characters are witten to stringl.

*/

retptr = strncpy(string2 , stringl , 3);

[

Exanples with a string of length 6 and a count of 10.
After the string "string" is copied, the remaining 4
bytes are set to null.
The result is "string¥0¥0¥0¥0".

*/

retptr = strncpy(string2 , stringl , 10);

2-87

Chapter 2, Standard Built-In Routines Reference

strpbrk Function

Function

This function locates the first occurrence of any character in a specified character set in a
character string.

Syntax

#include <string.h>
char *strpbrk(char *stringl , char *string2);

stringl Character string
string2 Character string that specifies the character set
Description

The st r pbr k function locates the first occurrence of any character in string2 in stringl,
and return a pointer to that character. The terminating null character ("¥0') in stringl is not
included in the search range.

This function is very similar to the st r cspn function. However, st r cspn differsin that
it returns the offset of the first appearing character from the start of the string.

Return value

The st r pbr k function returns a pointer to position in stringl where a character from
string?2 first appears.

This function returns NULL if none of the characters in string2 appears in stringl, or if
either stringl or string2 isthe null string ("").

See also

strchr strespn strrchr strspn

2-88

Chapter 2, Standard Built-In Routines Reference

Example
#i ncl ude <string. h>
char stringl[] = "ABCDEFGL234567";
char string2[] = "1234567"
voi d mai n(void)
{
char *ptr;
/*
This call returns a pointer to the seventh byte
since there are 7 characters in the string "ABCDE
FGL234567" that precede the appearance of one of the
characters in "1234567".
*/
ptr = strpbrk(stringl , string2);
/*
This call returns NULL, since none of the characters
"XYZ" appears in the string.
*/
ptr = strpbrk(stringl , "XYZ");
/*
This call returns NULL, since the null string was
passed in the calls.
*/
ptr = strpbrk(stringl , "");
}

2-89

Chapter 2, Standard Built-In Routines Reference

strrchr Function

Function

This function determines the last position in a character string that a certain character
appears.

Syntax

#include <string.h>
char *strrchr(char *string, int ¢);
string Character string
c Character to search for
Description
The st rr chr function determines the last position in string that ¢ appears. The null char-
acter ('¥0") can also be specified for c. Although cis of typei nt , it must have a value in

the range 0x00 to Oxff.

Tofind the position of thefirst occurrence of ¢, usethest r chr function.

Return value

The st rrchr function returns a pointer to the position of the last occurrence of the char-
acter. It returns NULL if the character was not found.

See also

memchr strcspn strchr strspn

2-90

Chapter 2, Standard Built-In Routines Reference

Example
<string. h>

#i ncl ude
"012345678901234567890123456789"

char string[]

mai n(void)

voi d
{
char *ptr;
/* Since the last occurrence of '0'" is at the twentieth
position this call returns pointers to string[20]. */
ptr = strrchr(string, '0");
/* When '¥0' is specified, this function returns a
pointer to the end of the string. */
ptr = strrchr(string , '¥0');
/* This call returns NULL since the character 'A does
not appear in the string. */
ptr = strrchr(string , "A);
}

2-91

Chapter 2, Standard Built-In Routines Reference

strspn Function

Function

This function determines the length of the section at the head of a string that consists of
characters from a particular set of characters.

Syntax

#include <string.h>
size t strspn(char *stringl , char *string2);

stringl Character string
string2 Character string that specifies the character set
Description

The st r spn function searchesin stringl for the location of the first character that does not
appear in string2, and return that point as an offset from the start of stringl. In other words,
it determines the length of the substring starting at the beginning of stringl that consists
only of characters from string2. The terminating null character ("¥0") in stringl is not
included in the search range.

Thest r cspn function, which has the exactly opposite functionality, is also provided.

Return value

The st r spn function returns the length of the substring from the start of stringl to the
position where the first character not in string2 appears.

This function returns zero if the first character of stringl does not occur in string2, or if
either stringl or string2 is the null string.

See also

2-92

strchr strrchr strpbrk strespn

Chapter 2, Standard Built-In Routines Reference

Example
#i ncl ude <string. h>
char stringl[] = " ABCDEFGABCDEFGL1234567";
char string2[] = "G-EDCBA';
voi d mai n(void)
{
size t retval;
/*
This call returns 14, since the first character in
" ABCDEFGABCDEFG1234567" that is not a character in
"GFEDCBA" occurs at the fourteenth character.
*/
retval = strspn(stringl , string2);
/*
This call returns 0, since the character at the
start of "ABCDEFGABCDEFGL234567" is not a character
in the string "XYzZ".
*/
retval = strspn(stringl , "XYZ");
}

2-93

Chapter 2, Standard Built-In Routines Reference

strstr Function

Function

This function searches for a substring in a character string.

Syntax

#include <string.h>

char *strstr(char *stringl , char *string2);

stringl String to be searched
string2 String to search for
Description

The st r st r function searches for string2 in stringl.

Return value
Thest r st r function returns a pointer to the first occurrence of string2 in stringl.

This function returns NULL if string2 does not appear in stringl, or if stringl is the null
string ().

Thisfunction returnsstringl if string2 is the null string.

See also

strespn strspn strchr strrchr strpbrk

2-94

Chapter 2, Standard Built-In Routines Reference

Example

#i ncl ude

<string. h>

char string[] =

/*

0 ---

1 === 2 == 3 --- 4

01234567890123456789012345678901234567890

*/
" WORD1

voi d

{

char

/*

*/
ptr
/*

*/
ptr
/*

*/
ptr
/*

*/
ptr

WWORD2 WWORD3 VWORD4 "
mai n(void)

*ptr;

This call searches for "WORD1".
It returns string + O.

= strstr(string , "WORD1");

This call searches for "WORD2".
It returns string + 10.

= strstr(string , "WORD2");

This call searches for "WORD3".
It returns string + 20.

= strstr(string , "WORD3");

This call searches for "NOTH NG'.
Since it does not appear in the object string,
returns NULL.

= strstr(string , "NOTH NG');

it

2-95

Chapter 2, Standard Built-In Routines Reference

strtod Macro/Function

Function

This routine converts a character string to a floating point number of type doubl e.

Syntax

#include <stdlib.h>
double strtod(char *s, char ** endptr);
S Character string to be converted

endptr Pointer that will point to the character where the scan stopped

Description

The st r t od routine converts the string pointed to by sto a double precision floating point
number and returns that value. Note that the string s must conform to the following syntax.

[whitespace] [sign] [digit] [.] [digit] [{elE} [sign] digit]

The symbols used have the following meanings.

Symbol Meaning

[white space] Some number of tahs and spaces (may be omitted)

[sign] Sign (may be omitted)

[digit] [.] [digit] Character string expressing a decimal fraction (may be omitted)

[{elE} [sign] digit] Character string expressing the exponent (may be omitted)

At the point where st rt od reads a character it can’t recognize, it stops scanning and if
endptr is non-null, it sets endptr to a pointer that indicates the position of that character.
Note that if the converted value is too large to be represented by the type doubl e, it
returns HUGE_VAL, and setser r no to ERANGE.

Return value

The st rt od routine returns the value of the converted string in an object of type doubl e.

See also

2-96

atof atoi atol strtol strtoul

Chapter 2, Standard Built-In Routines Reference

Example
#i ncl ude <stdlib. h>
voi d mai n(void)
{ doubl e res;
char *endp;

res = strtod("1.234e+6", &endp);

2-97

Chapter 2, Standard Built-In Routines Reference

strtok Function

Function

Syntax

This function breaks up a string into delimited tokens, and return the tokensin order.

#include <string.h>
char *strtok(char *stringl , char *string2);

stringl Character string to be tokenized, or NULL
string2 Character string consisting of delimiters
Description

2-98

The term "token" as used here refers to substrings of stringl that consist of characters other
than characters from string2. Delimiter refers to the characters in string2. For example, if
the delimiters are space (' '), colon (%:"), and period (."), and the string is "RTL665: Run
Time Library.", then the string would be broken up into the four tokens "RTL 665", "Run",
"Time", and "Library".

The st rt ok function breaks stringl up into tokens, taking the characters in string2 as
delimiters. Pointers to the separated tokens can be acquired in order by sequentia calls to
this function.

If st rt ok iscalled with a pointer to astring (i.e., not the null pointer) in stringl, st r t ok
will read over any delimiters that may appear at the start of stringl, and return a pointer to
the first token that appearsin stringl. A null character ("¥0") will be placed at the end of this
first token. NULL isreturned if there are no tokensin stringl.

If NULL is passed as stringl to st rt ok, it searches for the next token. If another token
exists, it returns a pointer to that token. A null character ("¥0") will be placed at the end of
thistoken. NULL isreturned if there are no more tokens.

Thest rt ok functionisnormally used asfollows.

(1) The string to be broken down is passed as stringl and the first token is acquired.

(2) NULL ispassed as stringl, and the next token is acquired.

(3) Step (2) isrepeated until NULL isreturned.

The contents of string2 may be changed each time st r t ok is called. Thisfunction storesa

null character at the end of the token each time a token is discovered. Note that as a resullt,
stringl is modified.

Chapter 2, Standard Built-In Routines Reference

Return value

The st r t ok function returns a pointer to a token as long as there are tokens remaining. It
returns NULL when there are no more tokens.

See also

strespn strspn strehr strrchr strpbrk strstr

2-99

Chapter 2, Standard Built-In Routines Reference

Example

/*
This program breaks a string into tokens using spaces, commas,
sem col ons, and colons as delinmiters. Pointers to these tokens are
stored in token_stock[] in order.

*/
#i ncl ude <string. h>
char string[] =" TOKENL, TOKEN2; TOKEN3:: TOKENd *;

char delimter[] =" 00
char *t oken_st ock[20] ;

voi d mai n(void)

{
char *token_ptr;
i nt token_counter = 0;
/*
The first call. Returns a pointer to the first token,
TOKENL.
*|
token_ptr = strtok(string , deliniter);
whil e (token_ptr != NULL)
{
t oken_st ock[token_counter] = token_ptr;
/* Save the pointer to the token. */
++t oken_count er;
if (token_counter >= 20)
br eak;
/*
The second and later calls. NULL is passed as the first
argunent. The calls to strtok return pointers to
TOKEN2, TOKEN3, and TOKEMA in that order. The | oop ends
when strtok finally returns NULL.
*|
token_ptr = strtok(NULL , delimiter);
}
/*
The result is as follows.
token_stock[0] :: "TOKENL"
token_stock[1] :: "TOKEN2"
token_stock[2] :: "TOKEN3"
token_stock[3] :: "TOKEN4"
t oken_stock[4] :: NULL
string[] is changed to be the follow ng.
" TOKEN1¥OTOKEN2¥0 TOKEN3¥0: TOKEN4¥0";
*|
}

2-100

Chapter 2, Standard Built-In Routines Reference

strtol Macro/Function

Function

This routine converts character strings to integers of typel ong.

Syntax

#include <stdlib.h>

long strtol(char *s, char **endptr, int base);

s Character string to be converted

endptr Pointer that will point to the character where the scan stopped
base Theradix

Description

The st rt ol routine converts the string pointed to by the argument s to an integer of type
| ong, and return that value. Note that the string must conform to the following syntax.

[whitespace] [sign] [O] [{x|X}] [digit]

The symbols used have the following meanings.

Symbol M eaning

[white space] Some number of tabs and spaces (may be omitted)
[sign] Sign (may be omitted)

[0] Zero (may be omitted)

[{x]X}] x or X (may be omitted)

[digit] A string of digits (may be omitted)

The st rt ol routine converts the string sin radix base as long asbase is in the range 2 to
36. That is, if baseis 16, the string is interpreted in base 16 and converted to a number, with
the characters'0' to '9', 'd to 'f', and 'A’ to 'F recognized as digits. If base is 0, then the radix
is determined by the first one or two characters in the digit string. The table below shows
how the radix is determined.

First Character Second Char acter Conversion radix
0 1to7 Octal

0 X or X Hexadecimal
1to9 Decimal

2-101

Chapter 2, Standard Built-In Routines Reference

Thestrtol routinereturnsOif baseis negative, 1, or greater than 36.
At the point where st rt ol reads a character it can’t recognize, it stops scanning and if
endptr is non-null, it sets endptr to a pointer that indicates the position of that character.

Note that if the acquired value cannot be represented by typel ong, strt ol returnseither
LONG_MAX or LONG_MIN and setser r no to ERANGE.

Return value

Thest rt ol routine returnsthe converted value.

See also

atof atoi atol strtod strtoul

Example

#i ncl ude <stdlib. h>

voi d mai n(void)
{
| ong res;
char *endp;

res = strtol ("Oxabcdef", &endp, 16);

2-102

Chapter 2, Standard Built-In Routines Reference

strtoul Macro/Function

Function

This routine converts character strings to integers of typeunsi gned | ong.

Syntax

#include <stdlib.h>

unsigned long strtoul (char *s, char **endptr, int base);

S Character string to be converted

endptr Pointer that will point to the character where the scan stopped
base Theradix

Description
Thestrt oul routine convertsthe string pointed to by the argument s to an integer of type
unsi gned | ong, and return that value. Note that the string must conform to the follow-
ing syntax.
[whitespace] [sign] [0] [{x|X}] [digif]

The symbols used have the following meanings.

Symbol M eaning

[white space] Some number of tabs and spaces (may be omitted)
[sign] Sign (may be omitted)

[0] Zero (may be omitted)

[{x]X}] x or X (may be omitted)

[digit] A string of digits (may be omitted)

Thestrt oul routine convertsthe string sin radix base aslong as base isin the range 2 to
36. That is, if baseis 16, the string is interpreted in base 16 and converted to a number, with
the characters'0' to '9', 'a to 'f', and ‘A’ to 'F recognized as digits. If base is 0, then the radix
is determined by the first one or two characters in the digit string. The table below shows
how the radix is determined.

First Character Second Char acter Conversion radix
0 1to7 Octal

0 X or X Hexadecimal
1to9 Decimal

2-103

Chapter 2, Standard Built-In Routines Reference

Thest rtoul routinereturnsO if baseis negative, 1, or greater than 36.
At the point where st rt oul reads a character it can’t recognize, it stops scanning and if
endptr is non-null, it sets endptr to a pointer that indicates the position of that character.

Notethat if the acquired value cannot be represented by typeunsi gned | ong, st rt oul
returnsULONG_MAX and setser r no to ERANGE.

Return value

Thest rt oul routinereturnsthe converted value.

See also

atof atoi atol strtod strtol

Example
#i ncl ude <stdlib. h>
voi d mai n(void)
{ unsi gned | ong res;
char *endp;

res = strtoul ("Oxabcdef", &endp, 16);

2-104

Chapter 2, Standard Built-In Routines Reference

fan Function

Function

Computes the tangent of its argument.

Syntax

#include <math.h>
double tan(doublex);

X Ananglein radian units

Description

Thet an function computes the tangent of the argument x.

Return value

Thet an function returns the tangent of the argument x.

See also

acos asin atan atan2 cos sin

Example
#i ncl ude <mat h. h>
voi d mai n(voi d)

{

doubl e x;
doubl e res;

x = 0.5;

res = tan(x);

2-105

Chapter 2, Standard Built-In Routines Reference

tanh Function

Function

Computes the hyperbolic tangent of its argument.

Syntax

#include <math.h>
double tanh(double x);
X An anglein radian units

Description

Thet anh function computes the hyperbolic tangent (sinh(x)/cosh(x)) of the argument x.

Return value

Thet anh function returns the hyperbolic tangent of the argument x.

See also

acos asin atan atan2 cos cosh sin sinh tan

Example
#i ncl ude <mat h. h>
voi d mai n(voi d)

{

doubl e x;
doubl e res;

x = 0.5;

res = tanh(x);

2-106

Chapter 2, Standard Built-In Routines Reference

tolower Macro/Function

Function

Converts upper case charactersto lower case characters.

Syntax

#include <ctype.h>

int tolower(int c);
c A single byte character (an integer in the range 0x00 to 0xff)
Description

The t ol ower routine converts c to lower case if it was an upper case character.
Otherwise, it returns ¢ unchanged.

The behavior is undefined if ¢ has a value outside the range 0x00 to Oxff.

Return value

If cis an upper case character, thet ol ower routine returns the corresponding lower case
character. For other values, it returns ¢ unchanged.

Thereturn value is undefined if ¢ has a value outside the range 0x00 to Oxff.

See also

Theisroutines toupper

2-107

Chapter 2, Standard Built-In Routines Reference

Example
#i ncl ude <ctype. h>

char bufferl[] = "0123456789ABCDEFGabcdef g";
char buffer2[64];

voi d mai n(void)
{
int i;
for (i =0 ; buffer[i] !="¥0" ; ++i)
{
buffer2[i] = tolower(bufferl[i]);
}
/*
buffer2[] will have the follow ng contents.
"0123456789abcdef gabcdef g"
*/

2-108

Chapter 2, Standard Built-In Routines Reference

toupper Macro/Function

Function

Converts lower case charactersto upper case characters.

Syntax

#include <ctype.h>

int toupper(int c);
c A single byte character (an integer in the range 0x00 to Oxff)
Description

Thet oupper routine converts c to upper case if it was alower case character. Otherwise,
it returns c unchanged.

The behavior is undefined if ¢ has a value outside the range 0x00 to Oxff.

Return value

If cisalower case character, the t oupper routine returns the corresponding upper case
character. For other values, it returns ¢ unchanged.

Thereturn value is undefined if ¢ has a value outside the range 0x00 to Oxff.

See also

Theis routines tolower

2-109

Chapter 2, Standard Built-In Routines Reference

Example
#i ncl ude <ctype. h>

char bufferl[] = "0123456789ABCDEFGabcdef g";
char buffer2[64];

voi d mai n(void)
{
int i;
for (i =0 ; bufferl[i] '="¥0" ; ++i)
{
buffer2[i] = toupper(bufferl[i]);
}
/*
buffer2[] will have the follow ng contents.
" 0123456789ABCDEFGABCDEFG'
*/

2-110

Chapter 2, Standard Built-In Routines Reference

ultoa Function

Function

Converts an integer of type unsi gned | ong to a character string in the specified radix.

Syntax

#include <stdlib.h>

char *ultoa(unsigned long number, char *s, int base);
number Value to be converted

S Buffer to store the converted string

base Theradix in which to express number

Description
The ul t oa function converts number to a null terminated string, and stores the result of
that conversion in s. The radix in which to express number is specified in base. The value
of base must be in the range 2 to 36. The ul t oa function sets s to the null string if base is

lessthan 2 or greater than 36.

A buffer large enough to hold the converted string must be alocated for s. The maximum
length of astring created by ul t oa, including the null character, is 33 bytes.

Return value

The ul t oa function returns a pointer to the string s.

See also

itoa Itoa

Example
#i ncl ude <stdlib. h>
char buf [33];

voi d mai n(void)

{
}

ul toa(2147483648, buf, 10);

2-111

Chapter 2, Standard Built-In Routines Reference

va_arg va end va_start Macro

Function

These macros implement variable argument lists.

Syntax

#include <stdarg.h>

void va start(va list ap, lastfix);

type va arg(va list ap, type);

void va end(va list ap);

ap Pointer to the arguments

lastfix ~ The name of the last fixed argument passed to the called function
type A datatype name

Description

Theva_arg,va_end,andva_st art macrosalow operations on variable argument lists
to be implemented easily when creating functions that take a variable number of arguments.

The va_st art macro sets ap to point to the start of variable argument list. The
va_st art macro must be called first.

The va_ar g macro extracts the current argument as the type specified by type, and
advances ap to the next argument. The type argument indicates the type that va_ar g will
return. The ap argument must be the same ap asthe ap that wasiinitialized by va_st art .

After all the arguments from the argument list have been read, theva_end macro arranges

that later processing will occur correctly. The va_end macro must be called last. The
behavior that follows is undefined if theva_nmacr o isnot called.

Return value

Theva_st art and va_end macros do not return values. The va_ar g macro returns the
argument currently pointed to by ap.

See also

vsprintf

2-112

Chapter 2, Standard Built-In Routines Reference

Example
#i ncl ude <stdarg. h>
int res;
voi d mai n(void)
{
res = total fn(7, 1, 2, 3, 4, 5, 6, 7);
}
int total _fn(int num ...)
{
va_list ap;
i nt cnt = 0;
i nt total = 0;
va_start(ap, num);
while (++cnt <= num)
total += va_arg(ap, int);
va_end(ap);
return (total);
}

2-113

Chapter 2, Standard Built-In Routines Reference

vsprintf Function

Function

This function formats data under the control of a format string and writes that formatted
datato a character string.

Syntax

#include <stdio.h>
int vsprintf(char *buffer, char *format, va_list arglist);
buffer ~ Buffer to hold the output string
format Format string
arglist Argument list pointer
Description
Thevspri nt f function operates identically to spri nt f except that instead of taking an
argument list, they take arglist, which is a pointer to an argument list. The vspri nt f
function converts arglist according to the conversion specifiers in the format string pointed

to by format, and write the output to the string pointed to by buffer.

Seethe description of spri nt f for details on conversion specifiers and other aspects.

Return value

Thevspri nt f function returns the number of bytes output to buffer. It returns EOF if any
errors occur.

See also

sprintf va_arg va end va start

2-114

Chapter 2, Standard Built-In Routines Reference

Example
#i ncl ude <stdio. h>
#i ncl ude <stdarg. h>
i nt i num

doubl e dnum
char buf [50] ;

voi d mai n(void)
{

i num = 127;

dnum = 123. 45;

vsp(buf, "% % %, inum dnum "Hello !!");
}
int vsp(char *s, char *fmt, ...)
{

va_ list ap;

i nt cnt;

va_start(ap, fm);

cnt = vsprintf(s, fnt, ap);

va_end(ap);

return (cnt);
}

2-115

Chapter 3

Standard Input/Output
Routines Reference

This chapter describes the library routines that handle standard input/output. The routines are
ordered alphabetically.

If acall to aroutine includes pointersto ROM (const char *, const void *, etc.) among its arguments
and the /WIN option is not specified, a specia variant of the routine must be used. For further
details on the naming conventions for these variants, see the appendix “Routines Accessing ROM.”

If acall to aroutine includes a pointer to a stream (FILE *) among its arguments, the only possibili-
tiesfor that stream are stdin, stdout, and stderr.

Chapter 3, Standard Input/Output Routines Reference

fgetc Function

Function

Gets a character from a stream.

Syntax
#include <stdio.h>
int fgetc(FILE * stream);
stream Pointer to a stream
Description

The f get ¢ function returns the next character from the specified input stream.

Return value

On success, f get ¢ returns the character it read converted to integer without sign exten-
sion. If the end of fileis encountered or an error is detected, f get ¢ returns EOF.

See also

fputc getc getchar ungetc

Example

#i ncl ude <stdi o. h>

voi d mai n(void)
{ .

i nt (o

printf("Input a character : ");

c = fgetc(stdin);

printf("The character was : '%' (%2x)\n", ¢, ¢);
}

3-1

Chapter 3, Standard Input/Output Routines Reference

fgets Function

Function

Gets astring from a stream.

Syntax

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

S Pointer to the area that will store the string
n Number of charactersto read
stream Pointer to a stream

Description

Thef get s function reads a string from stream and storesit in s. The read will terminate
when n-1 characters are read or when a carriage return character isread. Thef get s func-
tion will save the carriage return character at then end of s It will add a null terminator to
the end of the charactersread into s.

Return value
On success, f get s returns s. If the file ends or a file error occurs, then f get s returns
NULL.

See also

fputs gets

Example
#i ncl ude <stdio. h>
voi d mai n(void)
{ char buf [80] ;
printf("lnput a string : ");

fgets(buf, 80, stdin);
printf("The string was : %\n", buf);

3-2

Chapter 3, Standard Input/Output Routines Reference

fprintf Function

Function

Sends formatted output to a stream.

Syntax

#include <stdio.h>

int fprintf(FILE * stream, char * format [,argument, ...]);
stream Pointer to a stream
format Format string

argument Argument corresponding to a conversion type specifier

Description

Thef printf function takes alist of arguments, converts them in accordance with corre-
sponding conversion type specifiers in the format string specified by format, and outputs
the formatted data to stream. The number of conversion type specifiers must be the number
of arguments.

Refer tothespri nt f description for details on the conversion type specifiers.

Return value

Thef pri nt f function returns the number of bytes output. If an error occurs, it will return
EOF.

See also

fscanf printf putc sprintf

Example

#i ncl ude <stdio. h>

voi d main(void)

{
}

fprintf(stdout, "integer : %\ ncharacter : %\n", 123, 'A);

3-3

Chapter 3, Standard Input/Output Routines Reference

fputc

Function

Outputs a character to a stream.

Syntax

#include <stdio.h>

int fputc(int c, FILE * stream);

C A character

stream Pointer to a stream
Description

Thef put ¢ function outputs the character ¢ to the specified stream.

Return value

Function

On success, f put ¢ returnsthe character c. If an error occurs, it will return EOF.

See also

fgetc putc

Example

#i ncl ude <stdi o. h>

char s[] = "This is a test.\n";
voi d mai n(void)
{

i nt i;

for (i =0; s[i] !'="\0"; i++)

fputc(s[i], stdout);

3-4

Chapter 3,

Standard Input/Output Routines Reference

fputs

Function

Outputs a string to a stream.

Syntax
#include <stdio.h>
int fputs(char * s, FILE * stream,);
s A string
stream

Pointer to a stream

Description

Function

The f put s function outputs the null-terminated string s to the specified output stream.
The f put s function does not add a carriage return character, and it does not output the

final null terminator.

Return value

On success, f put s returnsatrue value. On failure, it returns EOF.

See also

fgets gets puts

Example

#i ncl ude <stdi o. h>

voi d

{
}

mai n(void)

fputs("This is a test.\n",

stdout);

3-5

Chapte

r 3, Standard Input/Output Routines Reference

fscanf Function

Function

Syntax

Scans and formats input from an input stream.

#include <stdio.h>

int fscanf(FILE * stream, char * format [,address, ...]);

stream Pointer to a stream

format Format string

address Argument corresponding to a conversion type specifier
Description

Return

Thef scanf function scans a sequence of input fields from the stream, reading one charac-
ter at atime. It then formats each field in accordance with the conversion type specifiersin
the format string specified by format. Finally it stores the formatted input at the addresses
indicated by the arguments following format. The number of formatting specifiers,
addresses, and input fields must all be the same.

The f scanf function may stop scanning certain fields before it encounters the normal
field terminating character (space). It may aso stop input for various reasons.

Refer to the sscanf description for details on the conversion type specifiers.

value

Thef scanf function returns the number of input fields correctly scanned, converted, and
stored. The return value will not include fields that did not store values.

See also

3-6

printf scanf sscanf

Standard Input/Output Routines Reference

Chapter 3,
Example
#i ncl ude <stdi o. h>
voi d mai n(void)
{
i nt i;
printf("Input an integer
if (fscanf(stdin, "%l"
printf("The integer
el se
printf("Cannot read
}

")
&))
v\ n",i);

an integer\n");

3-7

Chapter 3, Standard Input/Output Routines Reference

getc Macro/Function

Function

Gets a character from a stream.

Syntax

#include <stdio.h>
int getc(FILE * stream);
stream Pointer to a stream

Description

The get ¢ routine reads the next character from the specified input stream, and increments
the stream's file pointer to point to the next character.

Return value

On success, get ¢ returnsthe read character converted to an integer without sign extension.
If the file ends or an error occurs, then getc will return EOF.

See also

fgetc getchar gets putc putchar ungetc

Example

#i ncl ude <stdi o. h>

voi d mai n(void)
{ .

i nt C;

printf("lInput a character : ");

c = getc(stdin);

printf("The character was : '%' (%92x)\n", ¢, ¢);
}

3-8

Chapter 3, Standard Input/Output Routines Reference

getchar Macro/Function

Function

Gets a character from the standard input (st di n).

Syntax

#include <stdio.h>
int getchar(void);

Description

The get char routine returns the next character from the input stream (st di n). The
valueof get char isthesameasget c(stdin).

Return value

On success, get char returns the read character converted to an integer without sign
extension. If thefile ends or an error occurs, then get char will return EOF.

See also

fgetc getc gets putc putchar scanf ungetc

Example

#i ncl ude <stdi o. h>

voi d mai n(void)
{ .

i nt C;

printf("lnput a character : ");

c = getchar();

printf("The character was : '%' (%%2x)\n", ¢, ¢);
}

3-9

Chapter 3, Standard Input/Output Routines Reference

gets Function

Function

Reads a string from the standard input (st di n).

Syntax

#include <stdio.h>
char * gets(char * s);
S Pointer to an area that will store the string

Description
The get s function reads a string terminated by a carriage return character from the stan-
dard input stream (st di n) and stores it in s. The carriage return character will be
replaced by anull character in s.
The input string to get s may contain white space (spaces, tabs). The get s function will

stop reading when it encounters a carriage return character, and will copy all characters
read until that point to s.

Return value

On success, get s returnss. On an error, it will return NULL.

See also

fgets fputs getc puts scanf

Example

#i ncl ude <stdi o. h>

voi d mai n(void)

{
char buf [80];
printf("lnput a string : ");
gets(buf);

printf("The string was : %\n", buf);

3-10

Chapter 3, Standard Input/Output Routines Reference

printf Function

Function

Sends formatted output to the standard output.

Syntax

#include <stdio.h>

int printf(char * format [,argument, ...]);

format Format string

argument Argument corresponding to a conversion type specifier

Description
The pri nt f function converts the arguments in accordance with corresponding conver-
sion type specifiersin the format string specified by format, and outputs the formatted data
to the standard output. The number of conversion type specifiers must be the number of
arguments.

Refer tothespri nt f description for details on the conversion type specifiers.

Return value

The pri nt f function returns the number of bytes output. 1f an error occurs, it will return
EOF.

See also

fprintf fscanf putc puts scanf sprintf vprintf vsprintf

Example
#i ncl ude <stdio. h>

voi d mai n(void)
{
printf("integer : %\n"
"floating point : %\n"
“character : 9%\n", 1234, 3.14, 'A);

3-11

Chapter 3, Standard Input/Output Routines Reference

putc

Function

Outputs a character to a stream.

Syntax

#include <stdio.h>

int putc(int c, FILE * stream);
c A character

stream Pointer to a stream

Description

Macro/Function

The put c routine outputs the character c to the stream specified by stream.

Return value

On success, put ¢ returns the output character ¢. If an error occurs, it will return EOF.

See also

fprintf fputc fputs getc getchar printf putchar

Example

#i ncl ude <stdi 0. h>

char s[] = "This is a test.\n";
voi d mai n(void)
{

const char *p = s;

while (*p I'="\0")
putc(*p++, stdout);

3-12

Chapter 3, Standard Input/Output Routines Reference

putchar Macro/Function

Function

Outputs a character to the standard output (st dout).

Syntax

#include <stdio.h>

int putchar(int c);
c A character
Description

The put char routine outputs the character ¢ to the standard output. The value of
put char (c) isthesameasput c(c, st dout).

Return value

On success, put char returnsthe output character c. If an error occurs, it will return EOF.

See also

getc getchar printf putc puts

Example

#i ncl ude <stdi o. h>

const char s[] = "This is a test.\n";
voi d mai n(void)
{

const char *p = s;

while (*p !'="\0")
put char(*p++);

3-13

Chapter 3, Standard Input/Output Routines Reference

puts Function

Function

Outputs a string to the standard output (st dout).

Syntax

#include <stdio.h>

int puts(char * s);
s A string
Description

The put s functions outputs the null-terminated string s to the standard output stream
(st dout), and then outputs a carriage return character at the end.

Return value

On success, put s returnsatrue value. If an error occurs, it will return EOF.

See also

fputs gets printf putchar

Example
#i ncl ude <stdio. h>

voi d mai n(void)

{
}

puts("This is a test.");

3-14

Chapter 3, Standard Input/Output Routines Reference

scanf Function

Function

Scans the standard input stream, and inputs with formatting.

Syntax

#include <stdio.h>

int scanf(, char * format [,address, ...]);

format Format string

address Argument corresponding to a conversion type specifier
Description

The scanf function scans a sequence of input fields from the standard input stream
(st din), reading one character at atime. It then formats each field in accordance with
the conversion type specifiers in the format string specified by format. Finally it stores the
formatted input at the addresses indicated by the arguments following format. The number
of formatting specifiers, addresses, and input fields must all be the same.

Refer to the sscanf description for details on the conversion type specifiers.

Return value

The scanf function returns the number of input fields correctly scanned, converted, and
stored. The return value will not include fields that did not store values.

If scanf reads the end of file, then the return value will be EOF. If not even one field is
stored, then the return value will be 0.

See also

fscanf getc printf sscanf

3-15

Chapter 3, Standard Input/Output Routines Reference

Example
#i ncl ude <stdio. h>

voi d main(void)

{ . .
int i
printf("lnput an interger : ");
if (scanf("%l", &))
printf("The integer : %\n",i);
el se
printf("Cannot read an integer\n");
}

3-16

Chapter 3, Standard Input/Output Routines Reference

ungetc Function

Function

Pushes a character back in an input stream.

Syntax

#include <stdio.h>

int ungetc(int ¢, FILE * stream);

c A character

stream Pointer to a stream
Description

The unget ¢ function returns (pushes back) the character ¢ to its specified source input
stream stream. The stream must not have been opened as read-only. The character ¢ will
be returned from the stream with the next get ¢ or f read call. One character can be
pushed back while in any state. If unget c is caled twice without calling get c, then the
first character pushed back will be deleted. If f f | ush iscalled, then all pushed back char-
acters will be deleted from memory.

Return value

On success, unget ¢ returns the pushed-back character code. If the operation fails, then
unget ¢ will return EOF.

See also

getc

3-17

Chapter 3, Standard Input/Output Routines Reference

Example

#i ncl ude <stdio. h>
#i ncl ude <ctype. h>

voi d main(void)

{

int i =0;

int c;

printf("Input an integer : ");

while ((¢ =getchar()) '="\n" & isdigit(c))

i =10*i +c-'0;

ungetc(c, stdin);

printf("i : %, push back character : %\n", i, getchar());
}

3-18

Chapter 3, Standard Input/Output Routines Reference

viprintf Function

Function

Writes formatted output to a stream.

Syntax

#include <stdio.h>

int viprintf(FILE * stream, char * format, va_list arglist);
stream Pointer to a stream
format Format string
arglist Pointer to argument list
Description

Thevf printf function operates the same as pri nt f , but instead of taking an argument
list, it takes a pointer to an argument list.

The vf pri ntf function takes a pointer to a list of arguments, converts them in accor-
dance with corresponding conversion type specifiers in the format string specified by
format, and outputs the formatted datato stream. The number of conversion type specifiers
must be the number of arguments.

Refer tothespri nt f description for details on the conversion type specifiers.

Return value

The vf pri ntf function returns the number of bytes output. If an error occurs, it will
return EOF.

See also

fprintf va_arg va end va start vprintf vsprintf

3-19

Chapter 3, Standard Input/Output Routines Reference

Example

3-20

#i ncl ude <stdio. h>
#i ncl ude <stdarg. h>

int viprn(char * fm, ...)
{
va list ap;
i nt cnt;
va start(ap, fm);
cnt = vfprintf(stdout, fnt, ap);
va_end(ap);
}
voi d mai n(void)
{
viprn("integer : %\ n"
"floating point : 9%\n"
"character : %\n", 1234, 3.14,
}

"A

Chapter 3, Standard Input/Output Routines Reference

vprintf Function

Function

Writes formatted output.

Syntax

#include <stdio.h>

int vprintf(char * format, va_list arglist);

format Format string

arglist Pointer to argument list
Description

The vpri nt f function operates the same as pri nt f, but instead of taking an argument
list, it takes a pointer to an argument list.

Thevpri nt f function takes a pointer to alist of arguments, converts them in accordance
with corresponding conversion type specifiersin the format string specified by format, and
outputs the formatted data to stream. The number of conversion type specifiers must be the
number of arguments.

Refer tothe spri nt f description for details on the conversion type specifiers.

Return value

Thevpri nt f function returns the number of bytes output. If an error occurs, it will return
EOF.

See also

printf va arg va end va start vfprintf vsprintf

3-21

Chapter 3, Standard Input/Output Routines Reference

Example

3-22

#i ncl ude <stdio. h>
#i ncl ude <stdarg. h>

int vprn(const char * fm, ...)
{
va |ist ap;
i nt cnt;
va_start(ap, fm);
cnt = vprintf(fm, ap);
va_end(ap);
}
voi d nain(void)
{
vprn("integer : %l\n"
"floating point : %\n"
"character : %\n", 1234, 3.14,
}

"A

Appendix

Appendix

Routines Accessing Rom

OLMS-66K series microcontrollers use separate address spaces for program memory (ROM) and
data memory (RAM). The CC665S language specifications assign data objects to these two address
spaces according to the presence or absence of the const modifier. Objects with the modifier go into
ROM; those without, into RAM.

Let us consider how functions which take pointers as arguments—st r cpy(char *stringl, char
*string2), for example—access variables with the const modifier.

m Examplem
char ram dat a[128] ;
const char romdata[] = "sanple";
fn()
{

strcpy(randata, romdata);

}

Using CC665S's /WIN option assigns variables with the const modifier to the ROM WINDOW
area, where the functions can access them with data memory addressing, so there is no problem.
Omitting the /WIN option, however, places the two pointers in different address spaces which can-
not be accessed simultaneously. Without fail, the code in the example will produce erratic results.

RTL665S copes with this problem of two different address spaces by providing specia versions of
the ANSI/ISO 9899 C standard library routines for calls accessing ROM.

« |If routines taking pointers as arguments have names matching those in the standard, the pointers
are dlways for the data memory space.

» Routines with names made up of a name from the standard plus a suffix starting with an under-

score () include pointers to program memory (ROM) among their arguments. The suffixes have
the following meanings.

A-1

Appendix

Suffixesand Their Meanings

Memory Space Accessed
Number of Pointer
Suffix Arguments First Pointer Argument Subsequent Arguments
C 1 ROM
_CC Two or more ROM ROM
_cd Two or more ROM RAM
_dc Two or more RAM ROM

Let us consider some examples.

First, at ol , afunction with one pointer argument, has the following variants.

atol(s) sisapointer to RAM.
atol_c(s) sisapointer to ROM.

st r cnp, afunction with two pointer arguments, has the following variants.

stremp(sl, s2) sl and s2 are both pointersto RAM.
stremp_cc(sl, s2) sl and s2 are both pointers to ROM.
stremp_cd(sl , s2) sl isapointer to ROM; 2, a pointer to RAM.
stremp_dc(sl, s2) sl isapointer to RAM; s2, a pointer to ROM.

Appendix

m Examplen

The following program shows examples of proper usage, improper usage, and improper casts. The
explanation assumes that CC665S's/WIN option is not specified.

#i ncl ude
const
const

voi d

}

<string. h>

char *ranstrl
char *ranmstr2
char *ronstril
char *ronstr2

func(void)

/* Correct usage */
strenp(ranstrl , ranstr2);
strcnp_cc(ronstrl , ronstr2);
strcnp_cd(ronstrl , ranstr2);
strcnp_dc(ranstrl , ronstr2);

/* Incorrect usage */
strenp(ronstrl , ronstr2);
strcnp_cc(ramstrl , ranstr2);

/* | nproper casts */
strecnp((char *)ronmstrl , (char *)ronstr2);

Casts of the type shown in the last example are particularly dangerous. The source statements are
grammatically correct, so CC665S does not issue any error message. Since the program then inter-
prets pointers to one area (ROM) as pointersto atotally separate area (RAM), it will produce erratic

results without fail.

A-3

Appendix

Routines for Accessing ROM with Pointers

Thefollowing isalisting of the ANSI/ISO 9899 C standard library routines and their variants.

Routine

Syntax

atof

double atof(char *s);

double atof _c(const char *s);

atoi

int atoi(char *s);

int atoi_c(const char *s);

atol

long atol(char *s);

long atol_c(const char *s);

bsearch

void *bsearch(void *key, void *base, size t nelem, size t size,
int(*cmp)(void *, void *));

void *bsearch_cc(const void * key, const void *base, size_t nelem, size t size,
int(*cmp_cc)(const void *, const void *));

void *bsearch_cd(const void *key, void *base, size t nelem, size t size,
int(*cmp_cd)(const void *, void *));

void *bsearch_dc(void *key, const void *base, size t nelem, size t size,

int(*cmp_dc)(void *, const void *));

fprintf

int fprintf(FILE *stream, char *format [, argument, ...]);

int fprintf_dc(FILE *stream, const char *format [, argument, ...]);

fputs

int fputs(char *s, FILE *stream);

int fputs_c(const char *s, FILE *stream);

fscanf

int fscanf(FILE *stream, char *format [, address, ...]);

int fscanf_dc(FILE *stream, const char *format [, address, ...]);

Appendix

Routine Syntax
memchr void *memchr(void *region, int c, size_t count);
void *memchr_c(const void *region, int ¢, size t count);
memcmp int memcmp(void *regionl, void *region2, size t count);
int memcmp_cc(const void *regionl, const void *region2, size t count);
int memcmp_cd(const void *regionl, void *region2, size _t count);
int memcmp_dc(void *regionl, const void *region2, size t count);
memcpy void *memcpy(void *dest, void *src, size t count);
void *memcpy_dc(void *dest, const void *src, size t count);
printf int printf(char *format [, argument, ...]);
int printf_c(const char *format [, argument, ...]);
puts int puts(char *s);
int puts_c(const char *s);
scanf int scanf(char *format [, address, ...]);
int scanf_c(const char *format [, address, ...]);
sprintf int sprintf(char *buffer, char *format [, argument, ...]);
int sprintf_dc(char *buffer, const char *format [, argument, ...]);
sscanf int sscanf(char *string, char *format [, address, ...]);
int sscanf_cc(const char *string, const char *format [, address, ...]);
int sscanf_cd(const char *string, char *format [, address, ...]);
int sscanf_dc(char *string, const char *format [, address, ...]);
strcat char *strcat(char *stringl, char *string2);
char *strcat_dc(char *stringl, const char *string2);
strchr char *strchr(char *string, int c);

const char *strchr_c(const char *string, int ¢);

Appendix

Routine

Syntax

strcmp

int stremp(char *stringl, char *string2);

int stremp_cc(const char *stringl, const char *string2);
int stremp_cd(const char *stringl, char *string2);

int stremp_dc(char *stringl, const char *string2);

strcpy

char *strcpy(char *stringl, char *string2);
char *strcpy_dc(char *stringl, const char *string2);

strespn

size t strespn(char *stingl, char *string2);

size t strespn_ce(const char *stingl, const char *string?2);
size t strespn_cd(const char *stingl, char *string2);
size t strcspn_dc(char *stingl, const char *string2);

strlen

size t strlen(char *string).

size t strlen_c(const char *string).

strncat

char *strncat(char *stringl, char *string2, size_t count);

char *strncat_dc(char *stringl, const char *string2, size t count);

strncmp

int strncmp(char *stringl, char *string2, size t count);
int strncmp_cc(const char *stringl, const char * string2, size t count);
int strncmp_cd(const char *stringl, char *string2, size t count);

int strncmp_dc(char *stringl, const char *string2, size t count);

strncpy

char *strncpy(char *stringl, char *string2, size t count);

char *strncpy_dc(char * stringl, const char *string2, size_t count);

strpbrk

char *strpbrk(char *stringl, char *string2);

const char *strpbrk_cc(const char * stringl, const char *string2);
const char *strpbrk_cd(const char *stringl, char *string2);

char *strpbrk_dc(char *stringl, const char *string2);

Appendix

Routine Syntax
strrchr char *strrchr(char *string, int ¢);
char *strrchr_c(const char *string, int ¢);
strspn size t strspn(char *stringl, char *string2);
size t strspn_cc(const char *stringl, const char *string2);
size t strspn_cd(const char *stringl, char *string2);
size t strspn_dc(char *stringl, const char *string2);
strstr char *strstr(char *stringl, char *string2);
const char *strstr_cc(const char *stringl, const char *string2);
const char *strstr_cd(const char *stringl, char *string?2);
char *strstr_dc(char *stringl, const char *string2);
strtod double strtod(char *s, char **endptr);
double strtod_c(const char *s, const char **endptr);
strtok char *strtok(char *stringl, char *string2);
char *strtok_dc(char *stringl, const char *string2);
strtol long strtol(char *s, char **endptr, int base);
long strtol_c(const char *s, const char **endptr, int base);
strtoul unsigned long strtoul (char *s, char **endptr, int base);
unsigned long strtoul_c(const char *s, const char **endptr, int base);
viprintf int vfprintf(FILE *stream, char *format, va list arglist);
int vfprintf_dc(FILE *stream, const char *format, va_list arglist);
vprintf int vprintf(char *format, va_list arglist);
int vprintf_c(const char *format, va_list arglist);
vsprintf int vfprintf(char *buffer, char *format, va_list arglist);

int vfprintf_dc(char *buffer, const char *format, va list arglist);

Appendix

A-8

Addendum

Low-Level Routines

Programs using RTL665S s standard 1/0 routines must link in certain low-level routines.

This addendum describes these low-level routines called by the standard /O routines.

Addendum

Introduction

Low-level routines are hardware-dependent routines that are normally called indirectly via library
routines. Since the routines described in chapter 3 “Standard Input/Output Routines Reference” of
the RTL665S Run-Time Library Reference call these low-level routines internaly, the latter must
be specified at link time. The following chart lists the library routines calling these low-level rou-
tines.

Standard /0O Routines Necessary L ow-L evel Routines

fgetc, fgets, fscanf, getc, getchar, gets, scanf read
fprintf, fputc, fputs, printf, putc, putchar, puts, vfprintf, vprintf write

We supply sample versions of these low-level routines (read and write) to support standard input
and output. Since such routines are highly hardware dependent, however, these sample routines may
not always work. It is the user's responsibility to modify or even rewrite the routines to match the
user’s environment.

When modifying or rewriting these low-level routines, use the specifications starting on the next
page.

B-1

Addendum

Specifications for Low-Level Routines

read

Function

Reads from afile.

Syntax

int read(int handle, unsigned char * buffer, int len);
handle Handlefor an openfile

buffer Pointer to memory areafor storing the data
len Maximum number of bytes to read

Description

r ead attemptsto read len bytes from the file associated with handle into the buffer pointed
to by buffer.

The sample routine takes len bytes from the serial port’s receive buffer and stores them in
the buffer pointed to by buffer.

Return value
r ead returns an integer indicating the number of bytes placed in the buffer.

The sample routine contains absolutely no error processing. Expand it to return 0 on end-of-
file (Ctrl-Z) and to return —1 on error.

See also

write

B-2

Addendum

write

Function

Writesto afile.

Syntax

int write(int handle, unsigned char * buffer, int len);
handle Handlefor an openfile
buffer Pointer to memory area holding the data

len maximum number of bytes to write

Description

wr i t e attempts to write len bytes from the buffer pointed to by buffer to the file associated
with handle.

The sample routine takes len bytes from the buffer pointed to by buffer and stores them in
the serial port’s transmit buffer.

Return value
wr i t e returns an integer indicating the number of bytes written.

The sample routine contains absolutely no error processing. Expand it to return —1 on error.

See also

read

B-3

Appendix

B-4

	Cover
	Contents
	Introduction
	1 Overview
	1.1 RTL665S Run-Time Library Organization
	1.1.1 Header Files
	1.1.2 Library Files

	1.2 Compatibility with the ANSI/ISO 9899 C Standard
	1.3 Using the Library Routines
	1.3.1 Setting the INCL66K Environment Variable
	1.3.2 Program Notation
	1.3.3 The procedure from Compilation through Linking

	1.4 Role of Header Files
	1.4.1 Inclusion of Macros, Constants, and Types
	1.4.2 Inclusion of Function prototype declarations

	1.5 Functions and Macros
	1.5.1 Differences between Functions and Macros
	1.5.2 Calling Routines with Macro Definitions as Functions

	1.6 Reentrant Routines
	1.7 Header File Contents
	1.7.1 Character Classification and Convention <ctype.h>
	1.7.2 Error Identification <errno.h>
	1.7.3 Floating Point Limits <float.h>
	1.7.4 Integer limits <limits.h>
	1.7.5 Mathematical Functions <math.h>
	1.7.6 Global Jump <setjmp.h>
	1.7.7 Variable Arguments <stdarg.h>
	1.7.8 General definitions <stddef.h>
	1.7.9 Input/Output processing <stdio.h>
	1.7.10 General Utilities <stdlib.h>
	1.7.11 String Handling <string.h>

	1.8 Using the Run-Time Library Reference

	2 Standard Built-In Routines Reference
	abs
	acos
	asin
	atan
	atan2
	atof
	atoi
	atol
	bsearch
	calloc
	ceil
	cos
	cosh
	div
	exp
	fabs
	floor
	fmod
	free
	frexp
	isalnum ... isxdigit
	itoa
	labs
	ldexp
	ldiv
	log
	log10
	longjmp
	ltoa
	malloc
	memchr
	memcmp
	memcpy
	memmove
	memset
	modf
	offsetof
	pow
	qsort
	rand
	realloc
	setjmp
	sin
	sinh
	sprintf
	sqrt
	srand
	sscanf
	strcat
	strchr
	strcmp
	strcpy
	strcspn
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	strtoul
	tan
	tanh
	tolower
	toupper
	ultoa
	va_arg va_end va_start
	vsprintf

	3 standard Input/Output Routines Reference
	fgetc
	fgets
	fprintf
	fputc
	fputs
	fscanf
	getc
	getchar
	gets
	printf
	putc
	putchar
	puts
	scanf
	ungetc
	vfprintf
	vprintf

	Appendix
	Routines Accessing ROM
	Routines for Accessing ROM with Pointers

	Low-Level Routines
	Introduction
	Specifications for Low-Level Routines
	read
	write

