
1

RTL665S
Run-Time Library Reference

Program Development Support Software

FIRST EDITION

ISSUE DATE:Mar. 1997

E2Y0002-29-62

NOTICE
1. The information contained herein can change without notice owing to product and/or

technical improvements. Before using the product, please make sure that the information
being referred to is up-to-date.

2. The outline of action and examples for application circuits described herein have been
chosen as an explanation for the standard action and performance of the product. When
planning to use the product, please ensure that the external conditions are reflected in the
actual circuit, assembly, and program designs.

3. When designing your product, please use our product below the specified maximum
ratings and within the specified operating ranges including, but not limited to, operating
voltage, power dissipation, and operating temperature.

4. OKI assumes no responsibility or liability whatsoever for any failure or unusual or
unexpected operation resulting from misuse, neglect, improper installation, repair,
alteration or accident, improper handling, or unusual physical or electrical stress
including, but not limited to, exposure to parameters beyond the specified
maximum ratings or operation outside the specified operating range.

5. Neither indemnity against nor license of a third party's industrial and intellectual property
right, etc. is granted by us in connection with the use of the product and/or the information
and drawings contained herein. No responsibility is assumed by us for any infringement of
a third party's right which may result from the use thereof.

6. The products listed in this document are intended for use in general electronics equipment
for commercial applications (e.g., office automation, communication equipment,
measurement equipment, consumer electronics, etc.). These products are not authorized for
use in any system or application that requires special or enhanced quality and reliability
characteristics nor in any system or application where the failure of such system or
application may result in the loss or damage of property, or death or injury to humans.
Such applications include, but are not limited to, traffic and automotive equipment, safety
devices, aerospace equipment, nuclear power control, medical equipment, and life-
support systems.

7. Certain products in this document may need government approval before they can be
exported to particular countries. The purchaser assumes the responsibility of determining
the legality of export of these products and will take appropriate and necessary steps at
their own expense for these.

8. No part of the contents contained herein may be reprinted or reproduced without our prior
permission.

9. MS-DOS is a registered trademark of Microsoft Corporation.

Copyright 1997 Oki Electric Industry Co., Ltd.

TABLE OF CONTENTS

Introduction
The RTL665 Run-Time Library ... 0-1
The Organization of this Manual .. 0-2
Related Documents ... 0-3
Typographical Conventions and Terminology 0-4

Chapter 1. Overview
1.1 RTL665 Run-Time Library Organization .. 1-1

1.1.1 Header Files .. 1-1
1.1.2 Library Files .. 1-2

1.2 Compatibility with the ANSI/ISO 9899 C Standard .. 1-3
1.3 Using the Library Routines .. 1-4

1.3.1 Setting the INCL66K Environment Variable .. 1-4
1.3.2 Program Notation .. 1-4
1.3.3 The Procedure from Compilation through Linking .. 1-5

1.3.3.1 Compilation and Assembly .. 1-5
1.3.3.2 Library Linking .. 1-5

1.4 Role of Header Files .. 1-7
1.4.1 Inclusion of Macros, Constants, and Types .. 1-7
1.4.2 Inclusion of Function Prototype Declarations .. 1-8

1.5 Functions and Macros ... 1-9
1.5.1 Differences between Functions and Macros ... 1-9
1.5.2 Calling Routines with Macro Definitions as Functions .. 1-9

1.5.2.1 Removing a Macro Definition Using #undef ... 1-9
1.5.2.2 Enclosing the Routine Name in Parentheses .. 1-10

1.6 Reentrant Routines .. 1-11
1.7 Header File Contents ... 1-13

1.7.1 Character Classification and Conversion <ctype.h> ... 1-14
1.7.2 Error Identification <errno.h> ... 1-14
1.7.3 Floating Point Limits <float.h> ... 1-15
1.7.4 Integer Limits <limits.h> .. 1-17
1.7.5 Mathematical Functions <math.h> ... 1-18
1.7.6 Global Jump <setjmp.h> ... 1-19
1.7.7 Variable Arguments <stdarg.h> .. 1-19
1.7.8 General Definitions <stddef.h> ... 1-20
1.7.9 Input/Output Processing <stdio.h> ... 1-20
1.7.10 General Utilities <stdlib.h> ... 1-21
1.7.11 String Handling <string.h> ... 1-23

1.8 Using the Run-Time Library Reference .. 1-24

i

Chapter 2. Standard Built-In Routines Reference
Library Referene (alphabetic order)

abs .. 2-1
acos .. 2-2
asin ... 2-3
atan .. 2-4
atan2 .. 2-5
atof ... 2-6
atoi ... 2-8
atol ... 2-10
bsearch ... 2-12
calloc .. 2-14
ceil ... 2-15
cos .. 2-16
cosh .. 2-17
div .. 2-18
exp ... 2-19
fabs .. 2-20
floor ... 2-21
fmod ... 2-22
free ... 2-23
frexp ... 2-24
isalnum ... isxdight ... 2-25
itoa ... 2-28
labs ... 2-29
ldexp .. 2-30
ldiv ... 2-31
log .. 2-32
log10 .. 2-33
longjmp .. 2-34
ltoa ... 2-37
malloc .. 2-38
memchr .. 2-40
memcmp .. 2-42
memcpy ... 2-44
memmove .. 2-46
memset ... 2-48
modf ... 2-49
offsetof ... 2-50
pow .. 2-51
qsort ... 2-52
rand .. 2-54
realloc .. 2-55
setjmp .. 2-57
sin .. 2-58
sinh .. 2-59
sprintf ... 2-60
sqrt ... 2-65

ii

srand .. 2-66
sscanf ... 2-67
strcat .. 2-71
strchr .. 2-73
strcmp .. 2-75
strcpy ... 2-77
strcspn .. 2-78
strlen .. 2-80
strncat .. 2-82
strncmp .. 2-84
strncpy ... 2-86
strpbrk .. 2-88
strrchr ... 2-90
strspn .. 2-92
strstr ... 2-94
strtod .. 2-96
strtok .. 2-98
strtol ... 2-101
strtoul ... 2-103
tan .. 2-105
tanh .. 2-106
tolower ... 2-107
toupper ... 2-109
ultoa ... 2-111
va_arg va_end va_start .. 2-112
vsprintf ... 2-114

iii

Chapter3. Standard Input/Output
Routines Reference

Library Reference
fgetc ... 3-1
fgets ... 3-2
fprintf ... 3-3
fputc ... 3-4
fputs ... 3-5
fscanf ... 3-6
getc .. 3-8
getchar ... 3-9
gets ... 3-10
printf .. 3-11
putc .. 3-12
putchar ... 3-13
puts .. 3-14
scanf ... 3-15
ungetc .. 3-17
vfprintf ... 3-19
vprintf .. 3-21

Appendix
Routines Accessing Rom .. A-1
Routines for Accessing ROM with Pointers ... A-4

Addendum. Low-Level Routines
Introduction .. B-1
Specifications for Low-Level Routines ... B-2

read .. B-2
write ... B-3

iv

Introduction

The RTL665S Run-Time Library
RTL665S is a C run-time library for microcontrollers based on the OLMS-66K series nX-8/500S
CPU core. It supplies many routines frequently used in application programming. Using these rou-
tines can save much time and effort.

In principle, the library conforms to the ANSI/ISO 9899 C standard. It allows most existing user
programs written in C to be reused directly or with only minimal modification.

Introduction

0-1

The Organization of this Manual
This manual describes the RTL665S run-time library. This manual is written assuming that the read-
er is an experienced C programmer and is thoroughly familiar with the nX-8/500S CPU.

This manual consists of the following three chapters.

Chapter 1. Overview

This chapter provides an overview of the RTL665S run-time library. This chapter explains the
RTL665S library file organization, the use of the library, and the difference between macros and
functions. It also describes the functions that take pointers to code memory as arguments, and gives
an overview of the functions of the library routines.

Chapter 2. Standard Built-In Routines Reference

This chapter describes in detail the standard built-in routines of the library. It is organized alphabet-
ically by routine.

Chapter 3. Standard Input/Output Routines Reference

This chapter describes in detail the library routines that handle standard input/output. It is organized
alphabetically by routine.

Introduction

0-2

Related Documents
Refer to the following documents as required.

• CC665S User’s Manual

Describes the use of the CC665S C compiler and provides the language specifications.

• MAC66K Assembler Package User’s Manual

Describes the use of the software included in the MAC66K Assembler Package and provides the
language specifications for the assembly language.

• RTL665S.DOC

Provides the latest information not included in this manual.

• SPRNS500.DOC

Describes SPRNS50x.LIB, the non-floating point string conversion library.

Introduction

0-3

Typographical Conventions and Terminology
To help the reader locate, identify, and understand information easily, this manual uses visual cues
and standard text formats. The following typographical conventions are used in this guide.

Symbol Explanation

SAMPLE Messages displayed on the screen, examples of command line input, and exam-
ples of listing files to be created use this type style.

Italics Items that are written in italics are not to be entered as typed, but rather are to be
replaced by the required information in the user input.

[] Items enclosed in square brackets are optional items that are entered as needed.

… Three dots in a row indicate that the preceding item may be repeated as required.

{choice1|choice2} Items enclosed in curly braces ({ }) and separated by vertical bars indicate that
one of the items is to be selected and entered. Items not surrounded by square
brackets must be included exactly once in the input.

value1 to value2 Indicates a value between value1 and value2, inclusive.

Ctrl+C Indicates that the Ctrl key and the C key are to be pressed at the same time.

PROGRAM Vertically aligned dots indicate that a section of the program example has been
omitted.

.

.

.
PROGRAM

Introduction

0-4

The table below lists terms used throughout this manual and their meanings.

Term Meaning

Macro A name defined by the #define preprocessor directive. In this document, func-
tion-like macros (i.e. macros that take parameters) are sometimes referred to sim-
ply by the term “macro”.

Routine Both functions and function-like macros are referred to as “routines”.

Library routine A routine that is included in the RTL665S run-time library.

Type A name defined using typedef.

Constant macro A macro that takes no parameters and that always expands to the same constant
value. Constant macros are also referred to as simply “constants” in this docu-
ment.

Null character The character that has the ASCII code 0x00. That is, the character '\0'.

Null string A string of length zero, that is a string whose first byte is the null character.

Null terminator The null character that terminates a character string.

Null pointer A pointer to the address zero. Expressed by the NULL constant macro.

Introduction

0-5

Chapter 1

Overview
This chapter provides a simple description of the RTL665S run-time library, including its structure,
use, and the library routines it provides.

1.1 RTL665S Run-Time Library Organization
This section describes the files that make up the RTL665S run-time library.

The RTL665S run-time library consists of eleven header files and several library files.

1.1.1 Header Files

Eleven header files are provided. These files are differentiated by function. These header files
include function prototype declarations, macro definitions, and type definitions.

These header files are necessary when compiling user programs. The CC665S C compiler includes
the header files specified with the #include preprocessor directive in the source program.

The table below lists the header files and their content.

Header File Content

ctype.h Character classification and conversion

errno.h Error identifiers

float.h Floating point limit values

limits.h Integer limit values

math.h Mathematical functions

setjmp.h Global jump functions

stdarg.h Variable arguments

stddef.h Standard types and macros

stdio.h Input/output processing

stdlib.h General purpose utilities

string.h Character string operations

Chapter 1, Overview

1-1

1.1.2 Library Files

Each library file contains all the library routines. The format of the library files is the same binary
format as that of object files output by the RAS66K and RL66K programs.

The library files are required at link time. The RL66K linker searches for the library routines used in
the program in a library file, and links the program and those routines together to create an absolute
object file with the .ABS extension.

The library files provided for the nX-8/500S are as follows.

Library File Memory Model

L66KS50x.LIB RTL665S run time library full set version

R66KS50x.LIB RTL665S run time library reentrant version

SPRNS50x.LIB Non-floating point string conversion library

The small x in the library file names above varies with the memory model. The letters for the
memory models available are as follows.

x Memory Model

S Small memory model

E Effective medium memory model

M Medium memory model

C Compact memory model

K Effective large memory model

L Large memory model

When linking, specify the same memory model as that used when compiling with CC665S.

Chapter 1, Overview

1-2

1.2 Compatibility with the ANSI/ISO 9899 C
Standard

The RTL665S run-time library is basically a subset of the library specifications proposed in the
ANSI/ISO 9899 C Standard.

The header files listed below are not included in the RTL665S run-time library.

Standard Header Files not Supported by RTL665S

Header File Content

assert.h Execution time condition checking

locale.h Locale setting and changing

signal.h Signal processing functions

time.h Data and time processing functions

The functions, macros, constant macros, types and their interfaces all conform to the ANSI/ISO
9899 C standard.

The RTL665S run-time library includes a few functions not stipulated in the ANSI/ISO 9899 C
standard. These original functions are provided so that user programs can handle the independent
ROM and RAM spaces that are a feature of architecture of the nX-8/500S CPU core. For further
details, see the Appendix at the back of this manual.

Chapter 1, Overview

1-3

1.3 Using the Library Routines
This section describes the environment setup required to use the RTL665S run-time library, and the
procedures for using the library routines, from programming and compilation though linking.

1.3.1 Setting the INCL66K Environment Variable

The INCL66K environment variable setting provides the CC665S C compiler with the path for the
directory that holds the header files. The CC665S C compiler searches for the header files specified
with the #include preprocessor directive in source files starting with the path specified by the
INCL66K environment variable.

Use the DOS SET command to set the INCL66K environment variable. The SET command has the
following syntax.

SET INCL66K=path

■ Example ■

Use the following command line when the header files are stored in the A:\66K\INCLUDE directory.

SET INCL66K=A:\66K\INCLUDE

■ See also ■

The header file path can also be specified by using the CC665S C compiler’s /Ip a t h option. For
example, the path in the example above could also be specified by using the /I option as shown
below.

CC665S /TM66589 /IA:\66K\INCLUDE FOO.C

1.3.2 Program Notation

When using a library routine, the corresponding header file must be included in the source file. The
#include preprocessor directive is used to include required header files. The CC665S C compiler
inserts the header files specified with the #include preprocessor directive in the source file. Refer
to the library references of chapters 2 and beyond to determine which header file is required for a
given library routine.

■ Example 1 ■

This example shows the use of the memcpy function. The corresponding header file for the mem-
cpy function is string.h. Therefore, the following line must be specified in the source file.

#include <string.h>

The #include statements used to include header files can be specified in any order in the source
program.

Chapter 1, Overview

1-4

■ Example 2 ■

If both string.h and math.h are required, their inclusion can be specified either as:

#include <string.h>
#include <math.h>

or as:

#include <math.h>
#include <string.h>

There are two ways to specify the file name in the #include preprocessor directive. The first is to
enclose the file name angle brackets (< >) as shown in the examples above, and the second is to
enclose the name in double quotation marks (” ”). Always use angle brackets to include RTL665S
header files. See the “CC665S User’s Manual” for a detailed description of the # i n c l u d e p r e-
processor directive.

1.3.3 The Procedure from Compilation through Linking

This section describes the procedures used from source file compilation through linking.

1.3.3.1 Compilation and Assembly

There is no need to be aware of whether or not library routines are used when compiling and assem-
bling source files.

■ Example ■

The following commands compile and assemble the foo.c source file.

CC665S /TM66589 FOO.C

RAS66K FOO.ASM /CD

The /CD option to the RAS66K assembler is required to maintain distinction between upper and
lower case letters in variable and function names in the C source program. To use the CDB665
source level debugger, specify the /SD option to the CC655S C compiler and the /CC option to the
RAS66K assembler.

1.3.3.2 Library Linking

Following the compilation and assembly operations, the next step is the link operation using the
RL66K linker to create an absolute object file. Here, in addition to the object file created by the
compilation and assembly, you must also specify a startup routine and a library file.

Chapter 1, Overview

1-5

■ Example 1 ■

Use the following command to link the object file foo.obj.

RL66K FOO A:\66K\STARTUP\S66589S,,,A:\66K\LIB\L66KS50S.LIB /CC

In this example the S66589S.OBJ startup routine is in the A:\66K\STARTUP directory. Also, the
L66KS50S.LIB library file is in the A:\66K\LIB directory.

The library file path specification can be omitted if the library file is in the path indicated by the
LIB66K environment variable.

■ Example 2 ■

The following RL66K command line would be used if the L66KS50S.LIB file were in the
A:\66K\LIB directory and the LIB66K environment variable were set to A:\66K\LIB.

RL66K FOO A:\66K\STARTUP\S66589S,,,L66KS50S.LIB /CC

■ Major Point ■

Always specify the /CC option when linking.

Some library routines include their own initialization routine. The execution of these initialization
routines is implemented by calling the subroutine with the name _$$content_of_init in the
startup routine.

The /CC option informs the RL66K linker that these initialization routines exist. If an object file is
linked without the /CC option, initialization routine linking will not be performed correctly.

Chapter 1, Overview

1-6

1.4 Role of Header Files
The header files function as an interface between user programs and the library. Including the head-
er file that corresponds to a given library routine provides the compiler with the syntax (prototype)
of that library routine, as well as any constants and types used by that routine.

1.4.1 Inclusion of Macros, Constants, and Types

Header files must be included to define the macros, constants, and types included in the library.

The definitions of the macros, constants, and types used by library routines are included in the head-
er files. Programmers can also use these macros, constants, and types. The definitions of these items
as used by the library routines and as used by user programs must be completely identical.

In most cases, the programmer needs only be aware of the meaning of macros, constants, and types
included in the header files, and need not be concerned with the details of their definitions.

■ Example ■

#include <stdarg.h>

int func (int num , ...)
{

int i;
int total;
va_list arg;

va_start (arg , num);
total = 0;
for (i=0 ; i < num ; ++i)
{

total += va_arg (arg , int);
}
va_end(arg);
return total;

}

This example shows the use of variable arguments. Since the macros v a _ s t a r t, v a _ a r g, and
va_end and the type va_list are defined in stdarg.h, that header file is included. The pro-
grammer does not need to know the actual details of the definitions.

Chapter 1, Overview

1-7

1.4.2 Inclusion of Function Prototype Declarations

The header files include specifications for the calling syntax for all functions in the library. That is,
they include the specifications for the types of the arguments and for the return type. This declara-
tion is generally referred to as a prototype declaration.

The compiler checks that the syntax of calls to library functions in user programs, i.e., the number
of arguments, their type, and the return type, conforms to that of the prototype declaration in the
header file. The compiler reports a warning or, in certain cases, an error, if a call does not match the
function’s prototype.

Compiler type checking is extremely important for program reliability. This is because syntax errors
in function calls would otherwise become algorithm errors that would be difficult to discover.

■ Example ■

The strlen function is used in this example.

#include <string.h>

int i;

int func(void)
{

int len;

.

.

.
len = strlen(i); /* Warning */
.
.
.

}

The strlen function’s prototype in the string.h header file is as follows:

size_t strlen(char *);

Since the variable i (whose type is int) is specified as the argument in the first call to the strlen
function, the compiler issues a warning for this call.

The compiler is able to perform these checks because the string.h header file was included at
the start of the program. If the string.h file were not included, the compiler could not perform
these checks.

Chapter 1, Overview

1-8

1.5 Functions and Macros
1.5.1 Differences between Functions and Macros

The term “library routine” as used in this document actually refers to both functions and function-
like macros. The library routines included in the RTL665S run-time library are included as either
functions, macros, or both. The form(s) in which each library routine is provided are documented in
section 1.7, “Header File Contents,” chapter 2, “Standard Built-In Routines Reference,” and chapter
3, "Standard Input/Output Routines Reference."

Normally programs have no need to be aware of whether a routine that they use is a macro or a
function. Programs only need to be aware of the differences between macros and functions in the
following cases.

• Although function calls are expanded as subroutine calls, macros calls are expanded to inline
code by the preprocessor. That is, a macro is faster than a function by exactly the overhead asso-
ciated with a function call. However, since the same code is expanded each time a macro is
called, the program size will be larger than if a function had been used.

• While a function name has meaning as an address at compile time, macro names are expanded by
the preprocessor, and no longer exist at compile time. This means that a routine implemented as a
macro cannot be used through a function pointer.

• Although the compiler checks function calls for type matching, it does not type check macro
calls. That means that the programmer is responsible for checking the argument and return value
types associated with macro calls.

1.5.2 Calling Routines with Macro Definitions as Functions

Some of the library routines included in the RTL665S run-time library are provided as both macros
and functions. The toupper and related functions from ctype.h are examples. Routines of this
type are listed as “Macro/Function” in section 1.7, “Header File Contents,” chapter 2, “Standard
Built-In Routines Reference,” and chapter 3, “Standard Input/Output Routines Reference.”

Since the function prototype declaration for a routine appears before the macro definition in the
header file, normally, the macro definition will be used. However, there are two methods for using
the function form of such routines. The remainder of this section describes these methods.

1.5.2.1 Removing a Macro Definition Using #undef

The first method for forcing the use of the function definition of a routine is to remove the macro
definition of the routine from the environment using the #undef preprocessor directive. Be sure to
place the #undef preprocessor directive between the line where the header file is included using
the #include preprocessor directive and the first line where the routine is used. The safest place
is immediately following the #include directives.

Chapter 1, Overview

1-9

■ Example ■

In this example the #undef directive removes the definition of the toupper macro from the envi-
ronment.

#include <ctype.h>
#undef toupper /* Removes the macro definition. */

void func(void)
{

int c;
.
.
.
c = toupper(c); /* The routine is called as a function. */
.
.
.

}

1.5.2.2 Enclosing the Routine Name in Parentheses

The second method is to enclose the routine name in parentheses when calling the routine. The pre-
processor recognizes a function-like macro when it sees a left parenthesis immediately following the
macro name. Therefore, preprocessor macro expansion of function-like macros can be defeated by
enclosing the macro name in parentheses.

■ Example ■

In this example the function definition of the t o u p p e r routine is called by enclosing the name
“toupper” in parentheses.

#include <ctype.h>

void func(void)
{

int c;
.
.
.
c = (toupper) (c); /* The routine is called as a function.

*/
.
.
.

}

Chapter 1, Overview

1-10

1.6 Reentrant Routines
In addition to the L66KS50x.LIB full set library file, which includes routines for all the library rou-
tines described in this manual, RTL665S also includes the R66KS50x.LIB library file, which col-
lects only the reentrant routines.

The reentrant version should be specified if the same library routine is used for both interrupt and
normal processing.

See the file RTL665S.DOC to determine which library routines are reentrant, i.e., to determine if
they are included in the reentrant version library file.

Some run time library routines set the global variable errno to an error value if they receive an
incorrect value as an argument. Strictly speaking, these routines cannot be said to be reentrant.
However, since there is no processing within the library routines that depends on the value of
errno, these routines will correctly perform their intended functions even if the value of errno is
overwritten during interrupt handling. Therefore, RTL665S treats functions that reset e r r n o a s
reentrant routines.

Be careful when handling the value of errno when routines that set its value are used in both inter-
rupt handling and normal processing. Interrupt routines should save errno on entry and restore it
prior to exit if errno is referenced in normal processing.

Chapter 1, Overview

1-11

■ Example ■

This example demonstrates the use of the atol routine in an interrupt handler.

#include <errno.h>
#include <stdlib.h>

char data_buf[16];
long value;

#pragma interrupt GTM_OVF_function 0X2C

void GTM_OVF_function(void)
{
/*

Saves the current value of errno for normal processing.
*/
int old_errno = errno;

.

.

.
value = atol(data_buf);
.
.
.

/*
Restores the current value of errno for normal processing.

*/
errno = old_errno;

}

Chapter 1, Overview

1-12

Chapter 1, Overview

1-13

1.7 Header File Contents
This section describes the functions, macros, global variables, constant macros, and types provided
by the RTL665S run-time library.

The classification column classifies each object into one of the following.

Function
Macro
Macro/Function
Constant macro
Type
Global variable

The term “macro/function” indicates that both macro and function definitions of the routine are pro-
vided. Detailed descriptions of the functions, macros, and macro/function routines are provided in
chapter 2, “Standard Built-In Routines Reference,” and chapter 3, “Standard Input/Output Routines
Reference.”

Chapter 1, Overview

1-14

1.7.1 Character Classification and Conversion <ctype.h>

The header ctype.h declares routines for classifying and converting single byte characters.

Name Classification Description

isalnum Macro/Function Tests if a character is either a letter or a decimal digit.

isalpha Macro/Function Tests if a character is a letter.

iscntrl Macro/Function Tests if a character is a control character, i.e., is one of 0x00 to
0x1F or 7F.

isdight Macro/Function Tests if a character is a decimal digit.

isgraph Macro/Function Tests if a character is a printable character other than space (' '),
i.e., if it is in the range 0x21 to 0x7E.

islower Macro/Function Tests if a character is a lower case letter.

isprint Macro/Function Tests if a character is a printable character including the space
character (' '), i.e., if it is in the range 0x20 to 0x7E.

ispunct Macro/Function Tests if a character is a punctuation character, i.e., is one of
0x21 to 0x2F, 0x3A to 0x40, 0x5B to 0x60, and 0x7B to 0x7E.

isspace Macro/Function Tests if a character is a white space character, i.e., is one of
0x09 to 0x0D or space (' ').

isupper Macro/Function Tests if a character is an upper case letter.

isxdigit Macro/Function Tests if a character is a hexadecimal digit.

tolower Macro/Function Converts upper case letters to lower case letters.

toupper Macro/Function Converts lower case letters to upper case letters.

1.7.2 Error Identification <errno.h>

The header errno.h includes information related to errors that occur in library routines. The glob-
al variable e r r n o and constant macros for values that are assigned to e r r n o are defined in
errno.h.

Name Classification Description

errno Global variable The global variable e r r n o is of type volatile int a n d
holds error state information. Its initial value is zero, and it is set
to one of the following non-zero values according to the error
state when an error occurs in a library routine.

EDOM Constant macro The EDOM constant indicates a domain error. Domain errors
occur when an attempt is made to apply a mathematical function
to a value outside its domain, for example calling the a s i n
function with a value greater than one or less than minus one.

ERANGE Constant macro The ERANGE constant indicates an overflow error. Overflows
occur when the result of a mathematical function exceeds the
range of values that can be expressed in a value of type d o u b l e.

Chapter 1, Overview

1-15

1.7.3 Floating Point Limits <float.h>

The header float.h defines constant macros that express limit values for floating point numbers
of type float, double, and long double. Since the types double and long double are
identical in the CC665S C compiler the limits for the long double type are the same as those for
the double type.

Name Classification Description

DBL_DIG Constant macro The number of digits of decimal precision provided by numbers
of type double.

DBL_EPSILON Constant macro The smallest positive floating point number such that 1.0 +
DBL_EPSILON can be differentiated from 1.0 by numbers of
type double.

DBL_MANT_DIG Constant macro The number of bits in the fraction part of numbers of type
d o u b l e.

DBL_MAX Constant macro The largest value that can be represented by numbers of type
double.

DBL_MAX_EXP Constant macro The largest integer such that two (2) raised to that number
minus one is representable by numbers of type double.

DBL_MAX_10_EXP Constant macro The largest integer such that ten (10) raised to that number is
representable by numbers of type double.

DBL_MIN Constant macro The smallest value that can be represented by numbers of type
double.

DBL_MIN_EXP Constant macro The smallest integer n such that two (2) raised to the power n
minus one is representable by numbers of type double.

DBL_MIN_10_EXP Constant macro The smallest integer such that ten (10) raised to that number is
representable by numbers of type double.

FLT_DIG Constant macro The number of digits of decimal precision provided by numbers
of type float.

FLT_EPSILON Constant macro The smallest positive floating point number such that 1.0 +
FLT_EPSILON can be differentiated from 1.0 by numbers of
type float.

FLT_MANT_DIG Constant macro The number of bits in the fraction part of numbers of type
float.

FLT_MAX Constant macro The largest value that can be represented by numbers of type
float.

FLT_MAX_EXP Constant macro The largest integer such that two (2) raised to that number
minus one is representable by numbers of type float.

FLT_MAX_10_EXP Constant macro The largest integer such that ten (10) raised to that number is
representable by numbers of type float.

FLT_MIN Constant macro The smallest value that can be represented by numbers of type
float.

FLT_MIN_EXP Constant macro The smallest integer such that two (2) raised to that number
minus one is representable by numbers of type float.

Chapter 1, Overview

1-16

Name Classification Description

FLT_MIN_10_EXP Constant macro The smallest integer such that ten (10) raised to that number is
representable by numbers of type float.

FLT_RADIX Constant macro The floating point exponent representation radix.

FLT_ROUNDS Constant macro Indicates that rounding to nearest is performed.

LDBL_DIG Constant macro The same as DBL_DIG.

LDBL_EPSILON Constant macro The same as DBL_EPSILON.

LDBL_MANT_DIG Constant macro The same as DBL_MANT_DIG.

LDBL_MAX Constant macro The same as DBL_MAX.

LDBL_MAX_EXP Constant macro The same as DBL_MAX_EXP.

LDBL_MAX_10_EXP Constant macro The same as DBL_MAX_10_EXP.

LDBL_MIN Constant macro The same as DBL_MIN

LDBL_MIN_EXP Constant macro The same as DBL_MIN_EXP.

LDBL_MIN_10_EXP Constant macro The same as DBL_MIN_10_EXP.

Chapter 1, Overview

1-17

1.7.4 Integer Limits <limits.h>

The header limits.h defines constant macros that express limiting values for the integral types.

Name Classification Description

CHAR_BIT Constant macro 8
The number of bits in the type char.

CHAR_MAX Constant macro 127
The maximum value for objects of type char.

CHAR_MIN Constant macro –128
The minimum value for objects of type char.

INT_MAX Constant macro 32767
The maximum value for objects of type int.

INT_MIN Constant macro –32768
The minimum value for objects of type int.

LONG_MAX Constant macro 2147483647
The maximum value for objects of type long int.

LONG_MIN Constant macro –2147483648
The minimum value for objects of type long int.

SCHAR_MAX Constant macro 127
The maximum value for objects of type signed char.

SCHAR_MIN Constant macro –128
The minimum value for objects of type signed char.

SHRT_MAX Constant macro 32767
The maximum value for objects of type short int.

SHRT_MIN Constant macro –32768
The minimum value for objects of type short int.

UCHAR_MAX Constant macro 255
The maximum value for objects of type unsigned char.

UINT_MAX Constant macro 65535
The maximum value for objects of type unsigned int.

ULONG_MAX Constant macro 4294967295
The maximum value for objects of type unsigned long
int.

USHRT_MAX Constant macro 65535
The maximum value for objects of type unsigned short
int.

Chapter 1, Overview

1-18

1.7.5 Mathematical Functions <math.h>

The header m a t h . h declares several mathematical functions. All calculations are performed on
objects of type double. Certain of these functions set the value of the global variable errno to an
error value if an error occurs. See the descriptions of each routine in chapter 2, “Standard Built-In
Routines Reference.”

Name Classification Description

HUGE_VAL Constant macro The maximum value that can be represented by objects of type
double. This value is used to express infinity.

exp Function Computes the exponential function.

frexp Function Breaks a floating point number into its fraction and exponent
parts.

ldexp Function Computes the product of its argument and a power of 2.

log Macro/Function Computes the natural logarithm.

log10 Macro/Function Computes the common logarithm.

modf Function Breaks a floating point number into its integral and fractional
parts.

cosh Function Computes the hyperbolic cosine.

sinh Function Computes the hyperbolic sine.

tanh Function Computes the hyperbolic tangent.

ceil Function Computes the ceiling of a floating point number.

fabs Function Takes the absolute value of a floating point number.

floor Function Computes the floor of (i.e., the largest integer not greater than) a
floating point number.

fmod Function Computes the remainder of two floating point numbers.

pow Function Computes the value of x raised to the y power for two floating
point numbers x and y.

sqrt Function Computes the square root.

acos Macro/Function Computes the arc cosine.

asin Macro/Function Computes the arc sine.

atan Function Computes the arc tangent.

atan2 Function Computes the principle value of the arc tangent of its two argu-
ments. The atan2 function can be used to compute the arc tan-
gent of a value too large to be computed by the atan function.

cos Macro/Function Computes the cosine.

sin Macro/Function Computes the sine.

tan Function Computes the tangent.

Chapter 1, Overview

1-19

1.7.6 Global Jump <setjmp.h>

The header setjmp.h includes declarations for the function that implements the global jump func-
tionality, and definitions of a macro and a type. It is possible to jump out of the currently executing
function using these routines.

Name Classification Description

jmp_buf Type Global jumps are implemented by saving an environment using
setjmp, and then restoring that environment using longjmp.
The jmp_buf type represents stored environment objects.

setjmp Macro Stores the environment in argument, which must be an object of
type jmp_buf.

longjmp Function Restores an environment saved with the setjmp routine. As a
result, program execution transfers to the place where setjmp
was called.

1.7.7 Variable Arguments <stdarg.h>

The header stdarg.h includes the definitions and declarations used to implement functions that
take a variable number of arguments. Using these routines it is possible to create routines that take a
variable number of arguments without concern for assembly language level details.

Name Classification Description

va_list Type This type is used to hold information concerning variable argu-
ments lists. It is used by the v a _ s t a r t, v a _ a r g, and
va_end routines.

va_start Macro Prepares to reference a variable arguments list. This routine
must be invoked prior to using va_arg.

va_arg Macro Returns the next argument value in a variable arguments list.
The va_arg routine allows the second and later arguments to
the function to be accessed sequentially.

va_end Macro Performs the clean-up activities required after referencing a
variable arguments list.

Chapter 1, Overview

1-20

1.7.8 General Definitions <stddef.h>

The header stddef.h defines certain data types and macros that are used widely.

Name Classification Description

NULL Constant macro Express a null pointer.

offsetof Macro Returns the location of a structure member as the number of
bytes from the start of that structure.

ptrdiff_t Type The type ptrdiff_t is a signed integral type that represents
the difference between two pointers.

size_t Type The type s i z e _ t is an unsigned integral type that represents
the result of the sizeof operator.

1.7.9 Input/Output Processing <stdio.h>

The header stdio.h declares routines that perform input/output processing, and includes macros
and type definitions used by those routines.

Name Classification Description

EOF Constant macro –1
Although the original meaning of EOF in the ANSI/ISO9899 C
standard is end-of-file, it is also used as the error return value by
RTL665.

FILE Type Type for streams.

stderr Macro Pointer to standard error stream.

stdin Macro Pointer to standard input stream.

stdout Macro Pointer to standard output stream.

fgetc Function Gets a character from a stream.

fgets Function Gets a string from a stream.

fprintf Function Sends formatted output to a stream.

fputc Function Outputs a character to a stream.

fputs Function Outputs a string to a stream.

fscanf Function Scans and formats input from an input stream.

getc Macro/Function Gets a character from a stream.

getchar Macro/Function Gets a character from the standard input.

gets Function Reads a string from the standard input.

printf Function Writes formatted output to the standard output.

putc Macro/Function Outputs a character to a stream.

Chapter 1, Overview

1-21

Name Classification Description

putchar Macro/Function Outputs a character to the standard output

puts Function Outputs a string to the standard output.

scanf Function Scans the standard input stream, and inputs with formatting.

sprintf Function Writes formatted data as a string.

sscanf Function Reads formatted data from a string.

ungetc Function Pushes a character back in an input stream.

vfprintf Function Writes formatted output to a stream.

vsprintf Function Writes formatted data as a string.

vprintf Function Writes formatted output.

1.7.10 General Utilities <stdlib.h>

The header stdlib.h defines several general purpose utility routines and macros and types used
by those routines.

Name Classification Description

div_t Type The type div_t is the structure type returned by the div func-
tion. It is a structure with two members of type int that hold
the quotient and remainder.

ldiv_t Type The type l d i v _ t is the structure type returned by the l d i v
function. It is a structure with two members of type long that
hold the quotient and remainder.

Chapter 1, Overview

1-22

Name Classification Description

RAND_MAX Constant macro 32767
The maximum value of the pseudo-random numbers returned by
the rand function.

abs Function Returns the absolute value of an integer value of type int.

atof Macro/Function Converts a character string to a floating point number of type
double.

atoi Macro/Function Converts an integer of type int to a character string.

atol Macro/Function Converts an integer of type long to a character string.

bsearch Function Searches a sorted array for the specified item using a binary
search.

calloc Function Allocates the required amount of memory.

div Function Computes the quotient and remainder of two integers of type
i n t, stores the quotient and remainder in a structure of type
div_t, and returns that structure.

free Function Releases allocated memory.

itoa Function Converts an integer of type i n t to a character string in the
specified radix.

labs Function Returns the absolute value of an integer of type long.

ltoa Function Converts an integer of type l o n g to a character string in the
specified radix.

ldiv Function Computes the quotient and remainder of two integers of type
long, stores the quotient and remainder in a structure of type
ldiv_t, and returns that structure.

malloc Function Allocates memory.

qsort Function Sorts the elements in an array using the Quicksort algorithm.

rand Function Generates a pseudo-random number.

realloc Function Reallocates memory.

srand Macro/Function Initializes the sequence of pseudo-random numbers returned by
rand.

strtod Macro/Function Converts a character string to a floating point number of type
double.

strtol Function Converts a character string to an integer of type long.

strtoul Macro/Function C onver t s a ch arac te r s t r ing to an in te ger of type
unsigned
long.

ultoa Function Converts an integer of type unsigned long to a character
string in the specified radix.

Chapter 1, Overview

1-23

1.7.11 String Handling <string.h>

The string.h header declares functions that manipulate character strings and memory areas.

Name Classification Description

memchr Function Searches a memory area for the place where a certain single
byte datum first appears.

memcmp Function Compares two memory areas.

memcpy Function Copies the data in a memory area to another memory area.

memmove Function Copies the data in a memory area to another memory area.
Unlike memcpy, memmove operates correctly if the two areas
overlap.

memset Function Fills a fixed memory area with a specified single byte datum.

strcat Function Concatenates character strings.

strchr Function Searches a character string for the place where a certain character
first appears.

strcmp Function Compares character strings.

strcpy Function Copies character strings.

strcspn Function Computes the length of the initial section of the first character
string that does not include any characters from the second cha-
racter string.

strlen Function Computes the length of a character string.

strncat Function Concatenates the first n bytes of a character string to the end of
another character string.

strncmp Function Compares the first n bytes of two character strings.

strncpy Function Copies the first n bytes of a character string to another memory
area.

strpbrk Function Searches a character string for the first occurrence of any char-
acter in another character string.

strrchr Function Searches a character string for the last occurrence of a character.

strspn Function Computes the length of the initial segment of one character
string that consists of characters from the other character string.

strstr Function Searches in one character string for another character string.

strtok Function Divides a character string into tokens.

1.8 Using the Run-Time Library Reference
Chapters 2 and beyond document all the routines included in the RTL665S run-time library. Each
chapter lists its routines in alphabetical order.

The explanations assume the use of CC665S’s /WIN option. If this option is not used, arguments
that are pointers to ROM (const char *, const void *, etc.) require the use of routine variants sup-
porting such pointers. For further details on these routines, see the appendix “Routines Accessing
ROM.” For further details on the /WIN option, see the CC665S User’s Manual.

Chapter 1, Overview

1-24

Chapter 2: Standard Built-In Routines Reference

<Routine Name> Classification

The upper left of each page lists the routines described and the
upper right indicates their classification as function, macro, or
macro/function.

Function

This sections gives a concise description of the routine’s function.

Syntax

Indicates the header file that declares the routine(s) and gives the
prototype(s) for the routine(s) and meaning of the argument(s).

Description

Describes the routine’s function and usage in detail.

Return value

Specifies the return value.

See also

Lists related routines.

Example

Provides programming examples that actually use the routine.
These examples are designed to show the function of the routine in
an actual program. These examples are not necessarily actual appli-
cation programs.

Chapter 2

Standard Built-In
Routines Reference
This chapter describes the standard built-in routines of the RTL665S library. The routines are
ordered alphabetically.

If a call to a routine includes pointers to ROM (const char *, const void *, etc.) among its arguments
and the /WIN option is not specified, a special variant of the routine must be used. For further
details on the naming conventions for these variants, see the appendix “Routines Accessing ROM.”

abs Function

Function

Returns the absolute value of an integer of type int.

Syntax

#include <stdlib.h>

int abs(int n);

n An integer

Description

The abs function returns the absolute value of its integer argument n.

Return value

The abs function returns an integer in the range 0 to 32767. However, if n is –32768 it
returns –32768.

See also

fabs labs

Example

#include <stdlib.h>

void main(void)
{

int n,res;

n = -1234;
res = abs(n);

}

Chapter 2, Standard Built-In Routines Reference

2-1

acos Macro/Function

Function

Computes the arc cosine of its argument.

Syntax

#include <math.h>

double acos(double x);

x The real number value for which the arc cosine is to be computed

Description

The acos routine computes the arc cosine of its argument x. The value of x must be in the
range –1 to 1. If an argument with a value outside this range is passed to the acos routine,
a domain error occurs and the global variable errno is set to EDOM.

Return value

The acos routine returns the arc cosine of x, which is a value in the range 0 to π radians.

See also

asin atan atan2 cos sin tan

Example

#include <math.h>

void main(void)
{

double x;
double res;

x = 0.5;

res = acos(x);
}

Chapter 2, Standard Built-In Routines Reference

2-2

asin Macro/Function

Function

Computes the arc sine of its argument.

Syntax

#include <math.h>

double asin(double x);

x The real number value for which the arc sine is to be computed.

Description

The asin routine computes the arc sine of its argument x. The value of x must be in the
range –1 to 1. If an argument with a value outside this range is passed to the asin routine,
a domain error occurs and the global variable errno is set to EDOM.

Return value

The a s i n routine returns the arc sine of x, which is a value in the range –π/2 to π/2 radians.

See also

acos atan atan2 cos sin tan

Example

#include <math.h>

void main(void)
{

double x;
double res;

x = 0.5;

res = asin(x);
}

Chapter 2, Standard Built-In Routines Reference

2-3

atan Function

Function

Computes the arc tangent of its argument.

Syntax

#include <math.h>

double atan(double x);

x The real number value for which the arc tangent is to be computed

Description

The atan function computes the arc tangent of its argument x.

Return value

The atan function returns the arc tangent of x, which is a value in the range –π/2 to π/2
radians.

See also

acos asin atan2 cos sin tan

Example

#include <math.h>

void main(void)
{

double x;
double res;

x = 0.5;

res = atan(x);
}

Chapter 2, Standard Built-In Routines Reference

2-4

atan2 Function

Function

Computes the arc tangent of y/x.

Syntax

#include <math.h>

double atan2(double y, double x);

x, y Arbitrary real number values

Description

The atan2 function computes the arc tangent of y/x. This function returns correct values
even when x is zero or close to zero. Returns zero when both x and y are zero.

Return value

The atan2 function returns the arc tangent of y/x, which is a value in the range –π to π
radians.

See also

acos asin atan acos sin tan

Example

#include <math.h>

void main(void)
{

double x;
double y;
double res;

x = 2.0;
y = 3.0;

res = atan2(y, x);
}

Chapter 2, Standard Built-In Routines Reference

2-5

atof Macro/Function

Function

This routine converts a character string to a floating point number of type double.

Syntax

#include <stdlib.h>

double atof(char *s);

s Character string to be converted

Description

The atof routine converts the character string pointed to by the argument s to a double
precision floating point number, and return that value. Note that atof is equivalent to the
following function call.

strtod(s, (char * *)NULL);

The string s must conform to the following syntax.

[white space] [sign] [digit] [.] [digit] [{e |E} [sign] digit]

The symbols used have the following meanings.

Symbol Meaning

[white space] Some number of tabs and spaces (may be omitted)

[sign] Sign (may be omitted)

[digit] [.] [digit] Character string expressing a decimal fraction (may be omitted)

[{e |E} [sign] digit] Character string expressing the exponent (may be omitted)

The a t o f routine stops scanning when they encounter an unrecognized character. Also,
they return HUGE_VAL and set errno to ERANGE if the value converted cannot be rep-
resented by the type double.

Return value

The atof routine returns the value of the converted character string in an object of type
double.

Chapter 2, Standard Built-In Routines Reference

2-6

See also

atoi atol strtod strtol strtoul

Example

#include <stdlib.h>

void main(void)
{

double res;

res = atof("1.234e+6");
}

Chapter 2, Standard Built-In Routines Reference

2-7

atoi Macro/Function

Function

This routine converts a character string to an integer of type int.

Syntax

#include <stdlib.h>

int atoi(char *s);

s Character string to be converted

Description

The atoi routine converts the character string pointed to by the argument s to an integer of
type i n t, and return that value. Note that a t o i is equivalent to the following function
call.

(int)strtol(s, (char * *)NULL, 10);

The string s must conform to the following syntax.

[white space] [sign] [digit]

The symbols used have the following meanings.

Symbol Meaning

[white space] Some number of tabs and spaces (may be omitted)

[sign] Sign (may be omitted)

[digit] Character string expressing an integer (may be omitted)

The atoi routine stops scanning when they encounters an unrecognized character. Also,
the return value from atoi when an overflow occurs is undefined.

Return value

The a t o i routine returns the value of the converted character string in an object of type i n t.

See also

atof atol strtod strtol strtoul

Chapter 2, Standard Built-In Routines Reference

2-8

Example

#include <stdlib.h>

void main(void)
{

int res;

res = atoi("32767");
}

Chapter 2, Standard Built-In Routines Reference

2-9

atol Macro/Function

Function

This routine converts a character string to an integer of type long.

Syntax

#include <stdlib.h>

long atol(char *s);

s Character string to be converted

Description

The atol routine converts the character string pointed to by the argument s to an integer of
type long, and return that value. Note that atol is equivalent to the following function
call.

(long)strtol(s, (char * *)NULL, 10);

The string s must conform to the following syntax.

[white space] [sign] [digit]

The symbols used have the following meanings.

Symbol Meaning

[white space] Some number of tabs and spaces (may be omitted)

[sign] Sign (may be omitted)

[digit] Character string expressing an integer (may be omitted)

The atol routine stops scanning when they encounter an unrecognized character. If the
converted value is too large to be represented by an integer of type long, the atol rou-
tines return either LONG_MAX or LONG_MIN and set errno to ERANGE.

Return value

The a t o l routine returns the value of the converted character string in an object of type l o n g.

Chapter 2, Standard Built-In Routines Reference

2-10

See also

atof atoi strtod strtol strtoul

Example

#include <stdlib.h>

void main(void)
{

long res;

res = atol("-2147483647");
}

Chapter 2, Standard Built-In Routines Reference

2-11

bsearch Function

Function

This function performs a binary search for a specified item in a sorted array.

Syntax

#include <stdlib.h>

void *bsearch(void *key, void *base, size_t nelem, size_t size,

int (*cmp)(void *, void *));

key Search key

base Array to be searched

nelem Number of elements in the array

size Byte count indicating the size of each element

cmp Pointer to a comparison function

Description

The bsearch function searches for an element that matches key in the array base, which
has n e l e m elements. NULL is returned if no element is found that matches the specified
item. Note that the array elements must be sorted in advance.

The function *cmp is a user-specified comparison function that must take as its arguments
two void pointers (void *). If these two arguments are elem1 and elem2, the function must
return the following integers based on the result of the comparison.

Condition Return Value

*elem1 < *elem2 A negative value

*elem1 = = *elem2 0

*elem1 > *elem2 A positive value

Return value

The b s e a r c h function returns a pointer to the element in the array that matches k e y.
NULL is returned if there is no matching element.

Chapter 2, Standard Built-In Routines Reference

2-12

See also

qsort

Note: The comparison function must have the __noacc modifier. Without this modifier, compiling
with CC665S’s /REG option causes the function to take its first argument from the accumu-
lator instead of the stack, where bsearch() places it.

For further details, see the sections “/REG Option” and “Functions Modified with __accpass
and __noacc” in the CC665S User’s Manual.

Example

#include <stdlib.h>

char *array[5];
char a[10] = "apple";
char b[10] = "cherry";
char c[10] = "orange";
char d[10] = "peach";
char e[10] = "pear";
char **curr_ptr;

int __noacc compare(char *, char **);

void main(void)
{

array[0] = a;
array[1] = b;
array[2] = c;
array[3] = d;
array[4] = e;

curr_ptr = (char **)bsearch("peach", array, 5, sizeof(char *), compare);
}

int __noacc compare(char *ele1, char **ele2)
{

return(strcmp(ele1, *ele2));
}

Chapter 2, Standard Built-In Routines Reference

2-13

calloc Function

Function

Allocates the required amount of memory

Syntax

#include <stdlib.h>

void *calloc(size_t nelem, size_t size);

nelem The number of elements

size The size of each element

Description

calloc allocates nelem × size bytes of memory in the dynamic segment. The allocated
memory is all initialized to zero.

Return value

calloc returns a pointer to the newly allocated memory. It returns NULL if the requested
memory could not be allocated or if either nelem or size was zero.

See also

free malloc realloc

Example

#include <stdlib.h>
#include <string.h>

void main(void)
{

char *s;

s = (char *)calloc(10, sizeof(char));
strcpy(s, "sample");

}

Chapter 2, Standard Built-In Routines Reference

2-14

ceil Function

Function

Computes the ceiling of (i.e., rounds up) a floating point number.

Syntax

#include <math.h>

double ceil(double x);

x Floating point value

Description

The ceil function finds the smallest integer not less than its argument.

Return value

The ceil function returns the value found as an object of type double with an integral
value.

See also

floor fmod

Example

#include <math.h>

void main(void)
{

double num;
double up;

num = 12.3;

up = ceil(num);
}

Chapter 2, Standard Built-In Routines Reference

2-15

cos Macro/Function

Function

Computes the cosine of its argument.

Syntax

#include <math.h>

double cos(double x);

x An angle in radian units

Description

The cos routine computes the cosine of the input value x.

Return value

The cos routine returns a value in the range –1 to 1.

See also

acos asin atan atan2 sin tan

Example

#include <math.h>

void main(void)
{

double x;
double res;

x = 0.5;

res = cos(x);
}

Chapter 2, Standard Built-In Routines Reference

2-16

cosh Function

Function

Computes the hyperbolic cosine of its argument.

Syntax

#include <math.h>

double cosh(double x);

x An angle in radian units

Description

The cosh function computes the hyperbolic cosine, i.e., (ex + e–x)/2, of the input value x.

Return value

The cosh function returns the hyperbolic cosine of the argument x.

It returns HUGE_VAL and sets the global variable errno to ERANGE if the result is too
large to represent.

See also

acos asin atan atan2 cos sin sinh tan tanh

Example

#include <math.h>

void main(void)
{

double x;
double res;

x = 0.5;

res = cosh(x);
}

Chapter 2, Standard Built-In Routines Reference

2-17

div Function

Function

Computes the quotient and remainder of two values of type int.

Syntax

#include <stdlib.h>

div_t div(int numer, int denom);

numer Dividend

denom Divisor

Description

The d i v function divides the argument n u m e r by the argument d e n o m and returns the
result in an object of type div_t. The type div_t has two elements of type int, quot
and rem, and the div function stores the quotient in quot and the remainder in rem.

Return value

The div function returns the a structure that has quot (quotient) and rem (remainder) as
its members.

See also

ldiv

Example

#include <stdlib.h>

void main(void)
{

div_t res;
int num, den;
int quot, rem;

num = 32767;
den = 1000;

res = div(num, den);
quot = res.quot;
rem = res.rem;

}

Chapter 2, Standard Built-In Routines Reference

2-18

Chapter 2, Standard Built-In Routines Reference

2-19

exp Function

Function

Computes the exponential function (ex) of its argument.

Syntax

#include <math.h>

double exp(double x);

x Floating point value

Description

The exp function computes the exponential function (ex) of its argument x.

Return value

The exp function returns the value ex. Returns HUGE_VAL on overflow and 0.0 on under-
flow. Sets errno to ERANGE for both these cases.

See also

frexp ldexp log log10 pow sqrt

Example

#include <math.h>

void main(void)
{

double x;
double res;

x = 5.5;

res = exp(x);
}

fabs Function

Function

Computes the absolute value of a floating point number.

Syntax

#include <math.h>

double fabs(double x);

x Floating point value

Description

The fabs function computes the absolute value of the floating point number given as the
argument x.

Return value

The fabs function returns the absolute value of the argument x.

See also

abs labs

Example

#include <math.h>

void main(void)
{

double num;
double val;

num = 12.3;

val = fabs(num);
}

Chapter 2, Standard Built-In Routines Reference

2-20

floor Function

Function

Truncates a value at the decimal point.

Syntax

#include <math.h>

double floor(double x);

x Floating point value

Description

The floor function returns the largest integer not greater than the argument x.

Return value

The floor function returns the largest integer not greater than the argument x as a floating
point number.

See also

ceil fmod

Example

#include <math.h>

void main(void)
{

double num;
double down;

num = 12.3;

down = floor(num);
}

Chapter 2, Standard Built-In Routines Reference

2-21

fmod Function

Function

Computes the floating point remainder.

Syntax

#include <math.h>

double fmod(double x, double y);

x, y Floating point value

Description

The fmod function computes the value f, which is the remainder of x divided by y such that
x = ay + f, where a is an integer, f has the same sign as x, and | f | is less than | y |.

Return value

The fmod function returns the remainder as a floating point value. It sets the global vari-
able errno to EDOM if y is zero.

See also

ceil fabs floor modf

Example

#include <math.h>

void main(void)
{

double x;
double y;
double res;

x = 7.0;
y = 2.0;

res = fmod(x, y);
}

Chapter 2, Standard Built-In Routines Reference

2-22

free Function

Function

Releases memory.

Syntax

#include <stdlib.h>

void free(void *ptr);

ptr Pointer to the memory to be released

Description

free releases memory allocated by calloc, malloc, or realloc. ptr must be a point-
er returned by calloc, malloc, or realloc. The operation is undefined if a pointer to
any other area is passed to free. free returns without taking any action if it is passed a
NULL pointer.

Return value

None

See also

calloc malloc realloc

Example

#include <stdilb.h>
#include <string.h>

void main(void)
{

char *s;

s = (char *)malloc(10);
strcpy(s, "sample");

.

.

.
free(s);

}

Chapter 2, Standard Built-In Routines Reference

2-23

Chapter 2, Standard Built-In Routines Reference

2-24

frexp Function

Function

Breaks a floating point number into its fraction and exponent parts.

Syntax

#include <math.h>

double frexp(double x, int *pexp);

x Floating point value

pexp Pointer to the location that will hold the exponent

Description

The frexp function breaks the argument x into a fractional part m (such that the absolute
value of m is 0.5 or greater and less than 1.0) and an exponent part n, such that the relation
x = m × 2n holds. Note that it stores the exponent n, which is an integer value, at the loca-
tion pointed to by pexp.

Return value

The frexp function returns the value of the exponent m.

See also

ldexp modf

Example

#include <math.h>

void main(void)
{

double x;
double mant;
int pexp;

x = 18.4;

mant = frexp(x, &pexp);
}

isalnum ... isxdigit Macro/Function

Function

These routines classify characters.

Syntax

#include <ctype.h>

int isalnum(int c);

int isalpha(int c);

int iscntrl(int c);

int isdigit(int c);

int isgraph(int c);

int islower(int c);

int isprint(int c);

int ispunct(int c);

int isspace(int c);

int isupper(int c);

int isxdigit(int c);

c Single byte character (an integer between 0x00 and 0xff inclusive)

Description

These routines determine the classification of the character c, and return the result of that
determination. These routines assume the ASCII character set.

The result is undefined for values of c outside the range 0x00 to 0xff.

Chapter 2, Standard Built-In Routines Reference

2-25

The table below lists these routines and the test each one performs.

Routine Test

isalnum Tests if a character is a decimal digit ('0' to '9') or an alphabetic char-
acter ('a' to 'z' or 'A' to 'Z').

isalpha Tests if a character is an alphabetic character ('a' to 'z' or 'A' to 'Z').

iscntrl Tests if a character is a control character, i.e. is one of 0x00 to 0x1f or
0x7f.

isdigit Tests if a character is a decimal digit ('0' to '9').

isgraph Tests if a character is a printable character other than space (' '), i.e., is
in the range 0x21 to 0x7e.

islower Tests if a character is a lower case letter ('a' to 'z').

isprint Tests if a character is a printable character including the space charac-
ter (' '), i.e., is in the range 0x20 to 0x7e.

ispunct Tests if a character is a punctuation character, i.e., is one of 0x21 to
0x2f, 0x3a to 0x40, 0x5b to 0x60, and 0x7b to 0x7e.

isspace Tests if a character is a white space character, i.e., is one of 0x09 to
0x0d and space (' ').

isupper Tests if a character is an upper case letter ('A' to 'Z').

isxdigit Tests if a character is a hexadecimal digit ('0' to '9', 'a' to 'f', or 'A' to 'F').

Return value

These routines return a value other than zero if the condition is fulfilled, and zero if it is not
fulfilled.

The return valve is undefined for valves of c outside the 0x00 to 0xff.

See also

toupper tolower

Chapter 2, Standard Built-In Routines Reference

2-26

Example

#include <ctype.h>

void main(void)
{

int c;
int retval1 , retval2 , retval3 , retval4 , retval5;

/*
The following loop test the classes of the letters 'a' to 'z'.
*/

for (c = 'a' ; c <= 'z' ; ++c)
{

retval1 = isalnum(c); /* True, since alphabetic. */
retval2 = islower(c); /* True, since all are lower

case. */
retval3 = isupper(c); /* False, since none are upper

case. */
retval4 = isdigit(c); /* False, since none are decimal

digits. */
retval5 = isxdigit(c); /* True for 'a' to 'f', false

for the others. */
}

}

Chapter 2, Standard Built-In Routines Reference

2-27

itoa Function

Function

Converts an integer of type int to a character string in the specified base.

Syntax

#include <stdlib.h>

char *itoa(int number, char *s, int base);

number Number to be converted

s Buffer to store the converted character string

base The radix in which to express number

Description

The itoa function converts number to a null terminated character string, and stores that
result in s. The argument base specifies the radix in which number is to be expressed. The
value of base must be in the range 2 to 36. If base is less than 2 or greater than 36, itoa
sets s to the null string.

An area large enough to hold the converted string must be allocated for s. The maximum
length of the string converted by i t o a, including the terminating null character, is 17 bytes.

Return value

The itoa function returns a pointer to the character string s.

See also

ltoa ultoa

Example

#include <stdlib.h>

char buf[17];

void main(void)
{

itoa(12345, buf, 10);
}

Chapter 2, Standard Built-In Routines Reference

2-28

labs Function

Function

Returns the absolute value of an integer of type long.

Syntax

#include <stdlib.h>

long labs(long n);

n Integer

Description

The labs function returns the absolute value of the integer n of type long.

Return value

The l a b s function returns an integer in the range 0 to 2147483647. However, if n i s
–2147483648 it returns –2147483648.

See also

abs fabs

Example

#include <stdlib.h>

void main(void)
{

long n, res;

n = -123456;
res = labs(n);

}

Chapter 2, Standard Built-In Routines Reference

2-29

ldexp Function

Function

Computes a real number from a fraction and an exponent.

Syntax

#include <math.h>

double ldexp(double x, int xexp);

x Floating point value

xexp Integer exponent

Description

The ldexp function computes the value x times 2 raised to the power xexp.

Return value

The l d e x p function returns the computed value x times 2 raised to the power x e x p. It sets the
global variable e r r n o to ERANGE if the result of the computation is too large to represent.

See also

exp frexp modf

Example

#include <math.h>

void main(void)
{

double x;
double val;

x = 4.5;

val = ldexp(x, 5);
}

Chapter 2, Standard Built-In Routines Reference

2-30

ldiv Function

Function

Computes the quotient and remainder of two integers of type long.

Syntax

#include <stdlib.h>

ldiv_t ldiv(long int numer, long int denom);

numer Dividend

denom Divisor

Description

The l d i v function divides the argument n u m e r by the argument d e n o m and returns the result
in an object of type l d i v _ t. The type l d i v _ t has two elements of type l o n g, q u o t a n d
r e m, and the l d i v function stores the quotient in q u o t and the remainder in r e m.

Return value

The ldiv function returns a structure that has quot (quotient) and rem (remainder) as its
members.

See also

div

Example

#include <stdlib.h>

void main(void)
{

ldiv_t res;
long num, den;
long quot, rem;

num = 165536;
den = 1000;

res = ldiv(num, den);
quot = res.quot;
rem = res.rem;

}

Chapter 2, Standard Built-In Routines Reference

2-31

Chapter 2, Standard Built-In Routines Reference

2-32

log Macro/Function

Function

Computes the natural logarithm of a number x.

Syntax

#include <math.h>

double log(double x);

x The value that is the object of the logarithm calculation.

Description

The log function calculates the natural logarithm of the argument x.

Return value

The log function returns the calculated value, ln(x). It sets the global variable errno to
EDOM if the argument x is negative. It returns –HUGE_VAL if the argument x is zero, and
HUGE_VALE if the result is too large to represent. Sets e r r n o to ERANGE for both
these cases.

See also

exp log10

Example

#include <math.h>

void main(void)
{

double x;
double res;

x = 10;

res = log(x);
}

log10 Macro/Function

Function

Computes the common logarithm of its argument.

Syntax

#include <math.h>

double log10(double x);

x The value that is the object of the logarithm calculation.

Description

The log10 function calculates the base-ten logarithm of the argument x.

Return value

The l o g 1 0 function returns the calculated value. It sets the global variable e r r n o t o
EDOM if the argument x is negative. It returns –HUGE_VAL if the argument x is zero, and
HUGE_VALE if the result is too large to represent. Sets e r r n o to ERANGE for both
these cases.

See also

exp log

Example

#include <math.h>

void main(void)
{

double x;
double res;

x = 10;

res = log10(x);
}

Chapter 2, Standard Built-In Routines Reference

2-33

longjmp Function

Function

Performs a global jump.

Syntax

#include <setjmp.h>

void longjmp(jmp_buf environment , int value);

environment Area that holds an execution environment

value The value that will be returned by setjmp

Description

The longjmp function performs a global jump to the point where setjmp was called.

Global jumps can be performed by using the s e t j m p and l o n g j m p functions. The
longjmp function restores an execution environment saved in the argument environment
in advance by the setjmp function. As a result, the program appears to have returned from
s e t j m p after l o n g j m p is called. The argument v a l u e becomes the return value from
setjmp at the point the execution environment is restored.

The figure below shows the operation of setjmp and longjmp using a simple example.
The program execution proceeds in the order ➀, ➁, and then ➂.

Chapter 2, Standard Built-In Routines Reference

2-34

The value of value must be non-zero. The setjmp will return one if zero is specified for
value.

The following points must be observed when using longjmp. The operation of programs
that do not observe these points is undefined.

(1) An environment must be saved in advance by setjmp before calling longjmp.

(2) The l o n g j m p function must not be called after the function that called s e t j m p r e t u r n s .

Return value

None

See also

setjmp

Chapter 2, Standard Built-In Routines Reference

2-35

Example

#include <errno.h>
#include <setjmp.h>

void function1(void);
void function2(void);

jmp_buf environment;

void main(void)
{

int retval;

retval = setjmp(environment);
if (retval != 0)
{

/* error process */
}
.
.
.
function1();
.
.
.
function2();
.
.
.

}

void function1(void)
{

.

.

.
if (errno)

longjmp(environment , 1);
.
.
.

}

void function2(void)
{

.

.

.
if (errno)

longjmp(environment , 2);
.
.
.

}

Chapter 2, Standard Built-In Routines Reference

2-36

ltoa Function

Function

Converts an integer of type long to a character string in the specified base.

Syntax

#include <stdlib.h>

char *ltoa(long number, char *s, int base);

number Number to be converted

s Buffer to store the converted character string

base The radix in which to express number

Description

The ltoa function converts number to a null terminated character string, and stores that
result in s. The argument base specifies the radix in which number is to be expressed. The
value of base must be in the range 2 to 36. If base is less than 2 or greater than 36, then
ltoa sets s to the null string.

An area large enough to hold the converted string must be allocated for s. The maximum
length of the string converted by l t o a, including the terminating null character, is 33 bytes.

Return value

The ltoa function returns a pointer to the character string s.

See also

itoa ultoa

Example

#include <stdlib.h>

char buf[33];

void main(void)
{

ltoa(123456, buf, 10);
}

Chapter 2, Standard Built-In Routines Reference

2-37

malloc Function

Function

Allocates memory.

Syntax

#include <stdlib.h>

void *malloc(size_t size);

size The size of the memory to allocate.

Description

malloc allocates size bytes of memory in the dynamic segment. Due to memory boundary
management considerations, each time malloc is called it may actually consume size + n
bytes of memory if size is even and size + (n + 1) bytes of memory if size is odd. (The value
of n is 2 for the small, effective medium, and medium memory models, and 4 for the com-
pact, effective large and large memory models.) The contents of allocated memory are not
initialized.

The dynamic segment is the largest area remaining after RL66K has allocated all logical
segments in the address space.

Return value

m a l l o c returns a pointer to the allocated memory. It returns N U L L if the requested memory
could not be allocated or if s i z e was zero.

See also

calloc free realloc

Note: When RL66K allocates the dynamic segment, it allocates an area that fills the data memory
defined in the DCL file, regardless of whether external RAM is present in the system or not.

Therefore, when the system has only internal RAM or an external RAM with a limited
capacity, malloc will not return an error (NULL) even if all the existent area is used due to
multiple calls to malloc. This is because the malloc function uses the size acquired from
the dynamic segment for memory management. Accordingly, normal operation cannot be
guaranteed in this case.

To prevent this problem, use the /DM option to specify the valid data memory area at link
time. For example, if the actual data memory capacity is only 7FFH bytes, specify
/DM(7FFH).

Chapter 2, Standard Built-In Routines Reference

2-38

Example

#include <stdlib.h>
#include <string.h>

void main(void)
{

char *s;

if ((s = (char *)malloc(10)) != NULL)
{

strcpy(s, "sample");
}

}

Chapter 2, Standard Built-In Routines Reference

2-39

memchr Function

Function

This function searches for a specified data byte in a specified memory area.

Syntax

#include <string.h>

void *memchr(void *region , int c , size_t count);

region Pointer to a memory area

c Datum to be searched for

count Number of bytes over which to search

Description

The m e m c h r function searches for an occurrence of c in the first c o u n t bytes of region.
Although c is of type int, it must have a value in the range 0x00 to 0xff.

Return value

The memchr function returns a pointer to the first occurrence of c, if c occurs within the
first count bytes of region. It returns NULL if c is not found. It also returns NULL if count
is 0.

See also

memcmp memcpy memset strchr

Chapter 2, Standard Built-In Routines Reference

2-40

Example

#include <string.h>

char data[16] =
{
0x00,0x10,0x20,0x30,0x40,0x50,0x60,0x70,
0x80,0x90,0xa0,0xb0,0xc0,0xd0,0xe0,0xf0
};

void main(void)
{

char *ptr;

.

.

.
/* This call returns the addresses of data[8]. */
ptr = memchr(data , 0x80 , 16);
.
.
.
/* This returns NULL since there is no byte with the

value 0xff. */
ptr = memchr(data , 0xff , 16);
.
.
.
/* This returns NULL since there is no byte with the

value 0x80 in the first 4 bytes. */
ptr = memchr(data , 0x80 , 4);
.
.
.

}

Chapter 2, Standard Built-In Routines Reference

2-41

memcmp Function

Function

This function compares two memory areas.

Syntax

#include <string.h>

int memcmp(void *region1 , void *region2 , size_t count);

region1 Memory area 1

region2 Memory area 2

count Number of bytes to compare

Description

The memcmp function compares the first count bytes of region1 and region2 on a byte by
byte basis. Unlike the strcmp function, this function continues to compare beyond occur-
rences of the null character ('¥0').

Return value

The table below lists the return values according to the result of the comparison.

Return value Comparison result

0 region1 and region2 are identical.

Positive region1 is larger than region2.

Negative region1 is smaller than region2.

See also

memchr memcpy memset strcmp

Chapter 2, Standard Built-In Routines Reference

2-42

Example

#include <string.h>

char buf1[16] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
char buf2[16] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
char buf3[16] = {0,1,2,3,4,5,6,7,8,9,10, 1, 2, 3, 4, 5};

void main(void)
{

int ret;

/* This returns 0 since the contents of the compared areas are
identical. */

ret = memcmp(buf1 , buf2 , 16);
.
.
.
/* This returns a positive value since the first argument is

larger. */
ret = memcmp(buf1 , buf3 , 16);
.
.
.
/* This returns a negative value since the second argument is

larger. */
ret = memcmp(buf3 , buf2 , 16);
.
.
.

}

Chapter 2, Standard Built-In Routines Reference

2-43

memcpy Function

Function

This function copies data in one memory area to another

Syntax

#include <string.h>

void *memcpy(void *dest , void *src , size_t count);

dest Copy destination

src Copy source

count Number of bytes to copy

Description

The m e m c p y function copies c o u n t bytes from s r c into d e s t. Unlike s t r c p y a n d
strncpy, these function will copy bytes containing the null character ('¥0').

The behavior is undefined if the source and destination areas overlap. Use the memmove
function to copy overlapping areas.

Return value

The memcopy function returns dest.

See also

memchr memcmp memmove memset strcpy strncpy

Chapter 2, Standard Built-In Routines Reference

2-44

Example

#include <string.h>

char data1[16] =
{

0x00 , 0x10 , 0x20 , 0x30 , 0x40 , 0x50 , 0x60 , 0x70 ,
0x80 , 0x90 , 0xa0 , 0xb0 , 0xc0 , 0xd0 , 0xe0 , 0xf0

};
char data2[16];

void main(void)
{

char *retptr;
.
.
.
retptr = memcpy(data2 , data1 ,16);
.
.
.

}

Chapter 2, Standard Built-In Routines Reference

2-45

memmove Function

Function

Copies the data in one memory area to another.

Syntax

#include <string.h>

void *memmove(void *dest , void *src , size_t count);

dest Copy destination

src Copy source

count Number of bytes to copy

Description

The m e m m o v e function copies c o u n t bytes from s r c into d e s t. Unlike s t r c p y a n d
strncpy, these function will copy bytes containing the null character ('¥0').

Return value

The memmove function returns dest.

See also

memcpy strcpy strncpy

Chapter 2, Standard Built-In Routines Reference

2-46

Example

#include <string.h>

char data[] =
{
0x00 , 0x01 , 0x02 , 0x03 , 0x04 , 0x05 , 0x06 , 0x07 ,
0x08 , 0x09 , 0x0a , 0x0b , 0x0c , 0x0d , 0x0e , 0x0f ,
0x10 , 0x11 , 0x12 , 0x13 , 0x14 , 0x15 , 0x16 , 0x17 ,
0x18 , 0x19 , 0x1a , 0x1b , 0x1c , 0x1d , 0x1e , 0x1f ,
0x20 , 0x21 , 0x22 , 0x23 , 0x24 , 0x25 , 0x26 , 0x27 ,
0x28 , 0x29 , 0x2a , 0x2b , 0x2c , 0x2d , 0x2e , 0x2f
};

void main(void)
{

.

.

.
/* Copies 32 bytes of data starting at data + 16 to

the memory area starting at data.
Performs the copy correctly, even though the areas
overlap. */

memmove(data , data+16 , 32);
.
.
.

}

Chapter 2, Standard Built-In Routines Reference

2-47

memset Function

Function

Initializes a specified area of memory with a given data byte.

Syntax

#include <string.h>

void *memset(void *region , int c , size_t count);

region Memory area

c Data byte to be stored in memory.

count Number of bytes

Description

The memset function initializes the first count bytes of region to the value c. Although c is
of type int, it must have a value in the range 0x00 to 0xff.

Return value

The memset function returns region.

See also

memchr memcpy memcmp memmove

Example

#include <string.h>

char ram_data[64];

void main(void)
{

char *retptr;

/* Initializes the first 32 bytes of the buffer ram_data
with 0xff. */

retptr = memset(ram_data , 0xff , 32);

}

Chapter 2, Standard Built-In Routines Reference

2-48

Chapter 2, Standard Built-In Routines Reference

2-49

modf Function

Function

Breaks a floating point number into its integer and fraction parts.

Syntax

#include <math.h>

double modf(double x, double *pint);

x Floating point value

pint Pointer to location to hold the integer part.

Description

The modf function breaks its floating point argument x into integer and fractional parts,
stores the integer part of x at the location pointed to by pint, and returns the fraction part as
the value of the function.

Return value

The modf function returns the fraction part of its argument x with the sign.

See also

fmod frexp ldexp

Example

#include <math.h>

void main(void)
{

double x;
double pint;
double frac;

x = 10.2;

frac = modf(x, &pint);
}

offsetof Macro

Function

Determines the offset of a field in a structure.

Syntax

#include <stddef.h>

size_t offsetof(structname, fieldname);

structname structure name

fieldname member of structure

Description

The offsetof macro determines the offset of the field fieldname in the structure struct -
name as a number of bytes.

Return value

The offsetof macro returns the offset of the field fieldname in the structure structname
as a number of bytes.

Example

#include <stddef.h>

typedef struct{
int member1;
long member2;
char member3;

} structname;

void main(void)
{

size_t ret1;
size_t ret2;
size_t ret3;

ret1 = offsetof(structname, member1);
ret2 = offsetof(structname, member2);
ret3 = offsetof(structname, member3);

}

Chapter 2, Standard Built-In Routines Reference

2-50

Chapter 2, Standard Built-In Routines Reference

2-51

pow Function

Function

Computes x raised to the y power.

Syntax

#include <math.h>

double pow(double x, double y);

x Numeric value

y The exponent to which x is to be raised.

Description

The pow function computes x raised to the y power.

Return value

The pow function returns the computed value of x raised to the y power. There are cases
where, depending on the values of the arguments, either overflow occurs or the calculation
cannot be performed. On overflow, the p o w function returns HUGE_VAL and sets the
global variable e r r n o to ERANGE. If x is negative and y is not an integer, p o w s e t s
errno to EDOM. pow returns 1 if both x and y are zero.

See also

exp sqrt

Example

#include <math.h>

void main(void)
{

double x;
double y;
double val;

x = 2.0;
y = 3.0;

val = pow(x, y);
}

Chapter 2, Standard Built-In Routines Reference

2-52

qsort Function

Function

Sorts an array using the Quicksort algorithm.

Syntax

#include <stdlib.h>

void qsort(void *base, size_t n, size_t size, int (*cmp)(void *, void *));

base The start of the array to be sorted

n The number of elements in the array

size The size of each element

cmp A pointer to a comparison function

Description

The q s o r t function sorts an array using the Quicksort algorithm. The q s o r t function sorts
the elements in the array by calling the user defined comparison function pointed to by c m p.

The function *cmp is a user-specified comparison function that must take as its arguments
two void pointers (void *). If these two arguments are elem1 and elem2, the function must
return the following integers based on the result of the comparison.

Condition Return Value

*elem1 < *elem2 Negative

*elem1 = = *elem2 0

*elem1 > *elem2 Positive

Return value

None

See also

bsearch

Note: The comparison function must have the __noacc modifier. Without this modifier, compiling
with CC665S’s /REG option causes the function to take its first argument from the accumu-
lator instead of the stack, where qsort() places it.

For further details, see the sections “/REG Option” and “Functions Modified with __accpass
and __noacc” in the CC665S User’s Manual.

Example

#include <stdlib.h>

int __noacc compare(int *, int *);
int base[] = {12, 23, 15, 128, 43, 25};

void main(void)
{

qsort(base, 6, sizeof (int), compare);
}

int __noacc compare(int *elem1, int *elem2)
{

return (*elem1 - *elem2);
}

Chapter 2, Standard Built-In Routines Reference

2-53

rand Function

Function

Generates pseudo-random numbers.

Syntax

#include <stdlib.h>

int rand(void);

Description

The rand function generates a pseudo-random number in the range 0 to RAND_MAX and
returns that value.

Return value

The rand function returns a pseudo-random number.

See also

srand

Example

#include <stdlib.h>

int random[20];

void main(void)
{

int i;

for (i = 0; i < 20; ++i)
random[i] = rand();

}

Chapter 2, Standard Built-In Routines Reference

2-54

realloc Function

Function

Reallocates memory.

Syntax

#include <stdlib.h>

void *realloc(void *ptr, size_t size);

ptr Pointer to the memory to be reallocated

size Allocation size

Description

realloc reallocates memory that was allocated by calloc or malloc.

realloc allocates memory of the requested size and returns a pointer to that memory. If
new memory was actually allocated, the content of the original memory is copied to the
allocated memory. realloc functions identically to malloc if ptr is NULL. If size is 0
and ptr is not NULL, realloc frees the memory pointed to by ptr.

Return value

realloc returns a pointer to the reallocated memory. realloc returns NULL if it could
not reallocate memory.

See also

calloc free malloc

Chapter 2, Standard Built-In Routines Reference

2-55

Example

#include <stdlib.h>
#include <string.h>

char string1[] = " library ";
char string2[] = " reference.";

void main(void)
{

char *s1, *s2;

s1 = (char *)malloc(strlen_c(string1) + 1);
strcpy(s1, string1);

/* Reallocates memory.
The contents of s1 at this point is copied into s2.

* /
s2 = (char *)realloc(s1, strlen(s1) + strlen(string2) + 1);

/* Concatenate s2 and string2. */
strcat(s2, string2)

/* The contents of s2 is now "library reference."*/
}

Chapter 2, Standard Built-In Routines Reference

2-56

setjmp Macro

Function

Saves the current program execution environment for the global jump function.

Syntax

#include <setjmp.h>

int setjmp(jmp_buf environment);

environment Area to hold the execution environment

Description

The setjmp macro saves the current program execution environment in environment.

Global jumps can be performed by using the s e t j m p and l o n g j m p functions. The
longjmp function restores an execution environment saved in the argument environment
in advance by the setjmp function. As a result, the program appears to have returned from
setjmp after longjmp is called.

Although the s e t j m p macro returns zero when it is called to save the environment, it
returns a value other than zero (the argument to l o n g j m p) when the environment is
restored by a call to longjmp. Thus the program that calls the setjmp macro can deter-
mine whether it has just saved the environment, whether the environment has been restored
by longjmp, or even from which longjmp the environment has been restored by refer-
encing this return value.

Return value

The setjmp macro always returns zero when it is called to save the environment. When
setjmp returns as a result of a call to longjmp, it returns the non-zero value that was the
value of the second argument (value) to longjmp.

See also

longjmp

Example

See the example under longjmp.

Chapter 2, Standard Built-In Routines Reference

2-57

sin Macro/Function

Function

Computes the sine of its argument.

Syntax

#include <math.h>

double sin(double x);

x An angle in radian units

Description

The sin routine computes the sine of its argument x.

Return value

The sin routine returns the sine of its argument x.

See also

acos asin atan atan2 cos tan

Example

#include <math.h>

void main(void)
{

double x;
double res;

x = 0.5;

res = sin(x);
}

Chapter 2, Standard Built-In Routines Reference

2-58

sinh Function

Function

Computes the hyperbolic sine of its argument.

Syntax

#include <math.h>

double sinh(double x);

x An angle in radian units

Description

The sinh function computes the hyperbolic sine (ex – e–x)/2 of its argument.

Return value

The sinh function returns the hyperbolic sine of its argument x.

If the result is too large to represent, sinh returns HUGE_VAL with an appropriate sign
and sets the global variable errno to ERANGE.

See also

acos asin atan atan2 cos cosh sin tan tanh

Example

#include <math.h>

void main(void)
{

double x;
double res;

x = 0.5;

res = sinh(x);
}

Chapter 2, Standard Built-In Routines Reference

2-59

sprintf Function

Function

This function writes text to a character string according to a format specification.

Syntax

#include <stdio.h>

int sprintf(char *buffer, char *format [, argument, ...]);

buffer Buffer to hold the output character string

format Format string

argument Argument corresponding to a conversion type specifier

Description

The sprintf function creates a character string according to the format string pointed to
by format, and write that string to buffer.

The format argument consists of normal characters and an arbitrary number of conversion
specifiers. The number and types of the arguments following format must match the num-
ber of conversion specifiers and the types specified by each conversion specifier in format.
The behavior is undefined if the number of arguments is smaller than the number of conver-
sion specifiers or if the type specified by a conversion specifier does not match the type of
the corresponding argument. Extra arguments are ignored if the number of arguments
exceeds the number of conversion specifiers.

Conversions specifiers have the following syntax.

% [flags] [width] [.prec] [{h | l |L}] type

A sequence of flag characters is specified in the flags field. The conversion field width is
specified in the width field. The precision is specified in the .prec field. The terms h, l, and
L are type length specifiers. The conversion type specifier is specified in the type field.

The flags, field width, precision, and type length are optional. The table that follows pro-
vides an overview of these options.

Chapter 2, Standard Built-In Routines Reference

2-60

Chapter 2, Standard Built-In Routines Reference

2-61

Option Meaning

flags The flags specify aspects such as left justification or right justification,
and the sign, decimal point, or base (octal or hexadecimal) for numer-
ic values.

width Specifies the minimum width of the characters output.

.prec Specifies the maximum width of the characters output. Specifies the
minimum number of digits output for integers.

{h | l | L} Determines the size of the corresponding argument.
h short int
l long
L long double

Conversion Type Specifier (type)

This table lists the conversion type specifiers.

Conversion Type
Type Output FormatSpecifier

d, i int Converts to a signed decimal character string.

o unsigned int Converts to an unsigned octal character string.

u unsigned int Converts to an unsigned decimal character string.

x unsigned int Converts to an unsigned hexadecimal character string. The
values 10, 11, 12, 13, 14, and 15 are converted to a, b, c, d, e,
and f respectively.

X unsigned int Converts to an unsigned hexadecimal character string. The
values 10, 11, 12, 13, 14, and 15 are converted to A, B, C, D,
E, and F respectively.

f double Converts to a signed format of the form [–]d.dddddd.

e double Converts to a signed format of the form [–]d.dddddde+/–dd.

E double The same as 'e', except that the exponent is indicated by 'E'.

g double Converts to the format specified by either e or f. Normally
expresses values in the f format. However, expresses values in
the e format if the exponent is less than –4 or if it is larger than
the conversion field precision.

G double The same as g, except that it converts to the format specified
by either E or f.

c int Converts to a single character.

s char * Outputs characters from the character string pointed to by the
corresponding argument up to the conversion field precision
or until the end of that string. The pointer must point to a
character string in RAM.

S const char * The same as s, except that the pointer points to a character
string in ROM.

p void * Outputs the input argument as a pointer.

n int * Stores the number of characters output thus far into the object
pointed to by the corresponding argument.

% — Outputs a '%' character.

The output formats described in the table assume that flag characters, a width specifier, a
field precision width, and a type length were not specified. The remainder of this section
describes the influence of combinations of options and conversion type specifiers on the
output format.

Flag Characters (flags)

The following flag characters are supported.

Flag Character Description

– Justifies the output character string to the left edge of the field. If not
specified, the string is right justified.

+ Always attaches a sign at the start of a number. If not specified, a sign
character is only output for negative values.

Space (0x20) Inserts a space at the front of positive numbers. A minus sign is output
at the start of a negative number.

Applies to conversion type specifiers for numeric data types. Allocates
an appropriate format corresponding to the conversion type specifier.
See the following table.

0 If a 0 precedes one of the d, e, E, f, g, G, i, u, x, or X conversion type
specifiers, the field is filled with zeros instead of spaces. The '0' flag is
ignored if a precision is specified for d, i, o, u, x, or X conversions or
if the '–' flag is specified.

Conversion type specifiers are modified by the presence of the '#' flag as shown in the fol-
lowing table.

Conversion Type Specifier Influence of the '#' Flag

c, d, i, u, s, S No effect

o A zero is inserted at the beginning of the number for non-zero
values.

x, X A '0x' prefix is inserted.

e, E, f A decimal point is always inserted.

g, G A decimal point is always inserted, and a zero is inserted fol-
lowing the decimal point.

Chapter 2, Standard Built-In Routines Reference

2-62

Field Width (width)

The field width specifies the minimum width of the field into which the converted character
string is written.

When a field width is specified, if the converted string is shorter than the field width, then it
is padded with spaces up to the size of the width. The padding spaces are inserted at the
right if the '–' flag is specified, and at the left otherwise. Also, if the first character in the
field width specification is '0', then the field is padded with zeros instead of spaces. If the
converted string is longer than the field width, then the field width is increased to the length
of the converted string.

It is possible to specify the field width indirectly with an asterisk (*). In this case, the
field width will be taken from an argument of type i n t. For example, if the following
notation is used,

char buf[20];
int width = 8;
int number = 1234;

sprintf(buf," |%*d|" , width, number);

then the argument will be used as the field width and the following character string will
be output to buf.

| 1234|

Precision (.prec)

The precision specifier starts with a period. The precision syntax is the same as that for the
field width. The precision is taken to be zero if only a period with no following number is
specified.

The number of characters output when the precision is specified differs for each conversion
type specifier. The table below lists the operation when a precision of n is specified.

Conversion Type Specifier Output

d, i, o, u, x, X At least n digits are output.

e, E, f Exactly n digits are output following the decimal point.

g, G No more than n significant digits are output.

s, S No more than n characters are output.

Chapter 2, Standard Built-In Routines Reference

2-63

Type Length Specifier

The type length specifier changes the type of the corresponding argument.

Type Length Specifier Size

h For the d, i, o, u, x, and X conversion type specifiers, indicates that
the corresponding argument is of type short int or u n s i g n e d
short int.

l For the d, i, o, u, x, and X conversion type specifiers, indicates that
the corresponding argument is of type long int or u n s i g n e d
long int.
For the e, E, f, g, and G conversion type specifiers, indicates that the
corresponding argument is of type double.

L For the e, E, f, g, and G conversion type specifiers, indicates that the
corresponding argument is of type long double.

Return Value

The s p r i n t f function returns the number of bytes output to b u f f e r. If an error occurs,
sprintf returns EOF.

See also

sscanf

Example

#include <stdio.h>
#include <string.h>

char buf1[128];
char buf2[128];
char string[20];
int res1;
int res2;

void main(void)
{

res1 = sprintf(buf1, "|%d|%4x|%04X|%+12.4f|",
10, 0xabc, 0xAB, 1234.567);

strcpy(string, "RAM string");
res2 = sprintf(buf2, "|%-15s|%15S|", string, "ROM string");

}

Chapter 2, Standard Built-In Routines Reference

2-64

sqrt Function

Function

Computes the square root of its argument.

Syntax

#include <math.h>

double sqrt(double x);

x A non-negative floating point value

Description

The sqrt function computes the square root of its argument x.

Return value

The sqrt function returns the computed value of the square root of its argument x. It sets
the global variable errno to EDOM if x is negative, and to ERANGE if the result is too
large to represent.

See also

exp log pow

Example

#include <math.h>

void main(void)
{

double x;
double val;

x = 9.0;

val = sqrt(x);
}

Chapter 2, Standard Built-In Routines Reference

2-65

srand Macro/Function

Function

Initializes the pseudo-random number sequence.

Syntax

#include <stdlib.h>

void srand(unsigned int seed);

seed Initialization value

Description

The srand function initializes the pseudo-random number sequence. The pseudo-random
number sequence generated by rand can be changed by using a different value for seed.

Return value

None

See also

rand

Example

#include <stdlib.h>

int random[20];

void main(void)
{

int i;

srand(123);
for (i = 0; i < 20; ++i)

random[i] = rand();
}

Chapter 2, Standard Built-In Routines Reference

2-66

sscanf Function

Function

This function reads in a character string and convert it to appropriate data types according
to a format string.

Syntax

#include <stdio.h>

int sscanf(char *string, char *format [, address, ...]);

string Character string to be read in (input string)

format Format string

address Arguments corresponding to the conversion specifiers

Description

The sscanf function reads characters from the string pointed to by string, convert them to
appropriate types according to the format string pointed to by format, and store the results
in the locations pointed to by the corresponding address arguments.

The format string consists of white space, conversion specifiers, and characters other than
the percent character (%). When the sscanf function encounters a white space character-
istic in the format string, it jumps over all space characters until it encounters a character
other than space. A conversion specifier starts with a percent character (%) and specifies
how a section of the input string is to be interpreted. When the sscanf function encoun-
ters a conversion specifier, it acquires a corresponding token from the input string. For all
other characters, sscanf reads over matching characters in the input string.

The number of conversion specifiers and the number of arguments following format must
be identical. The behavior is undefined if the number of arguments is smaller than the num-
ber of conversion specifiers. Extra arguments are ignored if the number of arguments
exceeds the number of conversion specifiers. Also, the type required by each conversion
specifier must match the type of its corresponding argument. The behavior is undefined if
they do not match.

Conversion specifiers have the following syntax.

% [*] [width] [{h | l |L}] type

Chapter 2, Standard Built-In Routines Reference

2-67

An asterisk (*) indicates that the next field (token) is to be jumped over. Nothing is written
into the corresponding argument. The width item specifies the maximum number of charac-
ters (the input width) in the input field. An h, l, or L is a type length specifier, and modifies
the type of the argument. The type is the conversion type specifier.

The asterisk, input width, and type length items are optional.

Conversion Type Specifier

The table below lists the conversion type specifiers. This table lists the argument type and
the interpretation of the string read for each conversion type specifier.

Conversion Type Argument
Input String InterpretationSpecifier Type

d, i int * Converts a decimal character string to an integer. The format
of the string must be the same as a string interpreted by the
strtol function when a base of 10 is specified.

o unsigned int * Converts an octal character string to an integer. The format of
the string must be the same as a string interpreted by the
s t r t o l function when a base of 8 is specified.

u unsigned int * Converts an unsigned decimal character string to an unsigned
integer. The format of the string must be the same as a string
interpreted by the s t r t o u l function when a base of 10 is
s p e c i f i e d .

x, X unsigned int * Converts a hexadecimal character string to an unsigned inte-
ger. The format of the string must be the same as a string
interpreted by the s t r t o l function when a base of 16 is
s p e c i f i e d .

f float * Converts a character string to floating point. The format of the
string must be the same as a string interpreted by the strtod
function when converting a decimal expression to floating
point.

e, E float * Converts a character string to floating point. The format of the
string must be the same as a string interpreted by the strtod
function when converting an exponential expression to float-
ing point.

g, G float * Converts a character string to floating point. The format of the
string must be the same as a string interpreted by the strtod
function when converting either a decimal expression or an
exponential expression to floating point.

c char * Copies the number of characters specified by the field width to
the array specified by the argument. Note that white space
characters are included. A terminating null character ('¥0') is
not written by this operation. If the field width is not specified,
a single character is read.

Chapter 2, Standard Built-In Routines Reference

2-68

Chapter 2, Standard Built-In Routines Reference

2-69

Conversion Type Argument
Input String InterpretationSpecifier Type

s char * Copies a character string that includes no space characters to
the character string specified by the argument. A terminating
null character ('¥0') is written at the end of the string.

p void * Reads a character string as a pointer to type void.

n int * Stores the number of characters read so far in the area pointed
to by the argument.

% — Reads a percent (%) character. Does not set the corresponding
argument.

[…] char * Copies characters that match any of the characters in the char-
acter set enclosed in square brackets to the string pointed to by
the argument. The space character can also be included in the
character set. The syntax "[],...]" specifies that the character
"]" is included in the character set that is the object of the scan.

[^…] char * Copies characters that do not match any of the characters in
the character set enclosed in square brackets to the string
pointed to by the argument. The space character can also be
included in the character set. The syntax "[^],...]" specifies that
the character "]" is included in the character set that is exclud-
ed from the object of the scan.

The argument types in the preceding table assume that a type length was not specified. The
changes that occur in the types due to type length specifications are described next.

Type Length Specifier

The table below shows how the type length changes the type of the corresponding argument.

Type Length Specifier Type Interpretation

h For conversion type specifiers d, i, o, u, x, and X, the corresponding
argument is interpreted as a pointer to short int or unsigned
short int . The h type length specifier is ignored for other conver-
sion type specifiers.

l For conversion type specifiers d, i, o, u, x, and X, the corresponding
argument is interpreted as a pointer to long int or u n s i g n e d
long int.
For conversion type specifiers e, E, f, g, and G, the corresponding
argument is interpreted as a pointer to d o u b l e. The l type length
specifier is ignored for other conversion type specifiers.

L For conversion type specifiers e, E, f, g, and G, the corresponding
argument is interpreted as a pointer to long double. The L type
length specifier is ignored for other conversion type specifiers.

Return value

The sscanf function returns the number of correctly read input data items. It returns EOF
if an error occurred.

See also

sprintf

Example

#include <stdio.h>

int year, month, date;
char name[15];
float height;
int res;

void main(void)
{

res = sscanf("1993.11.17 , T.YAMADA , 170.5", "%d.%d.%d , %s , %f",
&year, &month, &date, name, &height);

}

Chapter 2, Standard Built-In Routines Reference

2-70

strcat Function

Function

This function concatenates character strings.

Syntax

#include <string.h>

char *strcat(char *string1 , char *string2);

string1 The destination character string

string2 The character string to be concatenated

Description

The strcat function concatenates string2 starting at the null character ('¥0') that termi-
nates string1. It adds a terminating null character ('¥0') at the end of the resultant string.

Return value

The strcat function returns string1.

See also

strncat strcpy strncpy

Chapter 2, Standard Built-In Routines Reference

2-71

Example

#include <string.h>

char string1[128] = "library ";
char string2[128] = "reference ";

void main(void)
{

char *retptr;

.

.

.
/* Creates the character string "library reference". */
retptr = strcat(string1 , string2);

/* Creates the character string "library reference manual". */
retptr = strcat(retptr , "manual");
.
.
.

}

Chapter 2, Standard Built-In Routines Reference

2-72

strchr Function

Function

This function searches for the first occurrence of a character in a string.

Syntax

#include <string.h>

char *strchr(char *string , int c);

string Character string

c Character to be found

Description

The strchr function searches for c in string. The null character ('¥0') can be specified for
c. Although the argument c is of type int, it must have a value in the range 0x00 to 0xff.

Use the function strrchr to find the last occurrence of c in a string.

Return value

The strchr function returns a pointer to the location where the character first appears. It
returns NULL if the character is not found.

See also

memchr strcspn strrchr strspn

Chapter 2, Standard Built-In Routines Reference

2-73

Example

#include <string.h>

char string[] = "012345678901234567890123456789";

void main(void)
{

char *ptr;

/* Since the first occurrence of '9' is at entry 9, */
/* this function returns pointers to string[9] */
ptr = strchr(string , '9');
.
.
.
/* When '¥0' is specified, this function returns

pointers to the end of the string. */
ptr = strchr(string , '¥0');
.
.
.
/* This call returns NULL since the letter 'A' does not

occur in the strings. */
ptr = strchr(string , 'A');

}

Chapter 2, Standard Built-In Routines Reference

2-74

strcmp Function

Function

This function compares two character strings.

Syntax

#include <string.h>

int strcmp(char *string1 , char *string2);

string1 String to be compared

string2 String to be compared

Description

The strcmp function compares the alphabetical order of string1 and string2.

Return value

The table below lists the return values and their meanings.

Return Value Meaning

0 string1 and string2 are identical.

Positive string1 is larger than (later in alphabetical order than) string2.

Negative string1 is smaller than (earlier in alphabetical order than) string2.

See also

memcmp strncmp

Chapter 2, Standard Built-In Routines Reference

2-75

Example

#include <string.h>

/* string1 is larger than string2. */
char string1[] = "ABCDE";
char string2[] = "AAAAA";

void main(void)
{

int retval;

/* Returns a positive value since the first string is
larger. */

retval = strcmp(string1 , string2);
.
.
.
/* Returns a negative value since the second string is

larger. */
retval = strcmp(string2 , string1);
.
.
.
/* Returns zero since the strings are identical. */
retval = strcmp(string1 , string1);

}

Chapter 2, Standard Built-In Routines Reference

2-76

Chapter 2, Standard Built-In Routines Reference

2-77

strcpy Function

Function

This function copies character strings.

Syntax

#include <string.h>

char *strcpy(char *string1 , char *string2);

string1 Copy destination

string2 Source string to be copied

Description

The s t r c p y function copies s t r i n g 2, including the terminating null character ('¥0') into
string1.

Return value

The strcpy function returns string1.

See also

memcpy strcat strncat strncpy

Example

#include <string.h>

char string[128];

void main(void)
{

char *retptr;

retptr = strcpy(string , "string data");

}

strcspn Function

Function

This function determines the length of the first section of a string that does not contain any
characters from a given character set.

Syntax

#include <string.h>

size_t strcspn(char *string1 , char *string2);

string1 Character string

string2 Character set specified as a character string

Description

The s t r c s p n function searches in s t r i n g 1 for the first occurrence of a character from
string2, and returns the offset of that point from the start of string1. In other words, it deter-
mines the length of the starting section of string1 that consists of characters not contained
in s t r i n g 2. The terminating null character ('¥0') in s t r i n g 1 is not included in the search
range.

This function is very similar to strpbrk. However, it differs in that strpbrk returns a
pointer to the first character that appears. Note that a function with the opposite functionali-
ty, the strspn function, is also provided.

Return value

The strcspn function returns the length of the substring from the start of string1 to the
point where the first character in string2 appears.

This function returns the length of string1 when none of the characters in string2 appear in
string1 or when string2 is the null string ("").

See also

strchr strrchr strpbrk strspn

Chapter 2, Standard Built-In Routines Reference

2-78

Example

#include <string.h>

char string1[] = "ABCDEFG1234567";
char string2[] = "1234567";

void main(void)
{

size_t retval;

.

.

.
/*

This call returns 7 since there are 7 characters in
the string "ABCDEFG1234567" that precede the
appearance of one of the characters in "1234567".

*/
retval = strcspn(string1 , string2);
.
.
.
/*

This call returns the length of the string "ABCDE
FG1234567", since none of the characters "XYZ"
appears in the string.

*/
retval = strcspn(string1 , "XYZ");

}

Chapter 2, Standard Built-In Routines Reference

2-79

strlen Function

Function

This function computes the length of a character string.

Syntax

#include <string.h>

size_t strlen(char *string);

string Character string

Description

The s t r l e n function determines the length of s t r i n g, that is the number of characters
(bytes) from the start of the string through the character directly preceding the terminating
null character ('¥0').

Return value

The strlen function returns the length of string.

See also

None

Chapter 2, Standard Built-In Routines Reference

2-80

Example

#include <string.h>

char string[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

void main(void)
{

size_t length;

/*
This call returns 26, which is the length of the
string.

*/
length = strlen(string);

}

Chapter 2, Standard Built-In Routines Reference

2-81

strncat Function

Function

This function appends the first section of one character string onto the end of another.

Syntax

#include <string.h>

char *strncat(char *string1 , char *string2 , size_t count);

string1 Destination character string

string2 Character string to be appended

count Number of characters to be appended

Description

The s t r n c a t function appends the first c o u n t bytes of s t r i n g 2 to s t r i n g 1 starting at
string1’s terminating null character ('¥0'). It adds a terminating null character ('¥0') to the
result string.

All of string2 is appended to string1 if count is greater than the length of string2. This oper-
ation is the same as that performed by the strcat function. The contents of string1 will
not be changed if count is zero or if string2 is the null string.

Return value

The strncat function returns string1.

See also

strcat strcmp strcpy strncpy

Chapter 2, Standard Built-In Routines Reference

2-82

Example

#include <string.h>

char string1[128] = "library ";
char string2[128] = "reference ";
char string3[128] = "manual";

void main(void)
{

char *retptr;

/*
Concatenates the first three characters of
"reference".
The contents of the string then becomes "library
ref".

*/
retptr = strncat(string1 , string2 , 3);

/*
A count larger than the length of the string "manual"
is specified.
The contents of the string then becomes "library ref
manual".

*/
retptr = strncat(retptr , string3 , 20);

/*
A character count of 0 is specified. The contents of
the string is not changed.

*/
retptr = strncat(retptr , string3 , 0);

}

Chapter 2, Standard Built-In Routines Reference

2-83

Chapter 2, Standard Built-In Routines Reference

2-84

strncmp Function

Function

This function compares the specified number of characters in two character strings.

Syntax

#include <string.h>

int strncmp(char *string1 , char *string2 , size_t count);

string1 Character string to be compared

string2 Character string to be compared

count Number of characters to be compared

Description

The strncmp function determines the alphabetical order of first count bytes of string1 and
string2.

When count is smaller than the length of the strings being compared, then the first count
bytes from the start of the strings form the range of the comparison. When count is larger
than the length of the strings, then the strings up to the terminating null character ('¥0') form
the range of the comparison. The result of strncmp when count is larger than the length
of either string1 or string2 is the same as the result of the strcmp function.

Return value

The table below lists the return values and their meanings.

Return ValueMeaning

0 string1 and string2 are identical.

Positive string1 is larger than (later in alphabetical order than) string2.

Negative string1 is smaller than (earlier in alphabetical order than) string2.

See also

memcmp strcat strcmp strcpy strncat strncpy

Example

#include <string.h>

/* string1 is larger than string2 starting at the seventh byte. */
const char string1[] = "1234567890";
const char string2[] = "1234560000";

void main(void)
{

int retval;

/* A comparison up to the sixth byte. The result is zero. */
retval = strncmp(string1 , string2 , 6);

/* A comparison up to the seventh byte. Since the first string
is larger, the result is a positive value. */

retval = strncmp(string1 , string2 , 7);

}

Chapter 2, Standard Built-In Routines Reference

2-85

strncpy Function

Function

This function copies the specified number of bytes.

Syntax

#include <string.h>

char *strncpy(char *string1 , char *string2 , size_t count);

string1 Copy destination

string2 Source character string

count Number of characters to be copied

Description

The strncpy function copies the first count bytes of string2 into string1.

If count is equal to or less than the length of string2, no terminating null character ('¥0') is
added to the copied string. If count is longer than string2, then all of string2 is copied into
string1, and furthermore, string1 is padded with null characters through character number
count.

Return value

The strncpy function returns string1.

See also

memcpy strcat strncat strcpy

Chapter 2, Standard Built-In Routines Reference

2-86

Chapter 2, Standard Built-In Routines Reference

2-87

Example

#include <string.h>

char string1[] = "string";

char string2[128];

void main(void)
{

char *retptr;

.

.

.
/*

Examples with a string of length 6 and a count of 3.
Only the first 3 characters are copied. No null
characters are written to string1.

*/
retptr = strncpy(string2 , string1 , 3);
.
.
.
/*

Examples with a string of length 6 and a count of 10.
After the string "string" is copied, the remaining 4
bytes are set to null.
The result is "string¥0¥0¥0¥0".

*/
retptr = strncpy(string2 , string1 , 10);

}

strpbrk Function

Function

This function locates the first occurrence of any character in a specified character set in a
character string.

Syntax

#include <string.h>

char *strpbrk(char *string1 , char *string2);

string1 Character string

string2 Character string that specifies the character set

Description

The strpbrk function locates the first occurrence of any character in string2 in string1,
and return a pointer to that character. The terminating null character ('¥0') in string1 is not
included in the search range.

This function is very similar to the strcspn function. However, strcspn differs in that
it returns the offset of the first appearing character from the start of the string.

Return value

The s t r p b r k function returns a pointer to position in s t r i n g 1 where a character from
string2 first appears.

This function returns NULL if none of the characters in s t r i n g 2 appears in s t r i n g 1, or if
either string1 or string2 is the null string ("").

See also

strchr strcspn strrchr strspn

Chapter 2, Standard Built-In Routines Reference

2-88

Example

#include <string.h>

char string1[] = "ABCDEFG1234567";
char string2[] = "1234567";

void main(void)
{

char *ptr;

/*
This call returns a pointer to the seventh byte
since there are 7 characters in the string "ABCDE
FG1234567" that precede the appearance of one of the
characters in "1234567".

*/
ptr = strpbrk(string1 , string2);

/*
This call returns NULL, since none of the characters
"XYZ" appears in the string.

*/
ptr = strpbrk(string1 , "XYZ");

/*
This call returns NULL, since the null string was
passed in the calls.

*/
ptr = strpbrk(string1 , "");

}

Chapter 2, Standard Built-In Routines Reference

2-89

strrchr Function

Function

This function determines the last position in a character string that a certain character
appears.

Syntax

#include <string.h>

char *strrchr(char *string , int c);

string Character string

c Character to search for

Description

The strrchr function determines the last position in string that c appears. The null char-
acter ('¥0') can also be specified for c. Although c is of type int, it must have a value in
the range 0x00 to 0xff.

To find the position of the first occurrence of c, use the s t r c h r f u n c t i o n .

Return value

The strrchr function returns a pointer to the position of the last occurrence of the char-
acter. It returns NULL if the character was not found.

See also

memchr strcspn strchr strspn

Chapter 2, Standard Built-In Routines Reference

2-90

Example

#include <string.h>

char string[] = "012345678901234567890123456789";

void main(void)
{

char *ptr;

/* Since the last occurrence of '0' is at the twentieth
position this call returns pointers to string[20]. */

ptr = strrchr(string , '0');
.
.
.
/* When '¥0' is specified, this function returns a

pointer to the end of the string. */
ptr = strrchr(string , '¥0');
.
.
.
/* This call returns NULL since the character 'A' does

not appear in the string. */
ptr = strrchr(string , 'A');

}

Chapter 2, Standard Built-In Routines Reference

2-91

strspn Function

Function

This function determines the length of the section at the head of a string that consists of
characters from a particular set of characters.

Syntax

#include <string.h>

size_t strspn(char *string1 , char *string2);

string1 Character string

string2 Character string that specifies the character set

Description

The strspn function searches in string1 for the location of the first character that does not
appear in string2, and return that point as an offset from the start of string1. In other words,
it determines the length of the substring starting at the beginning of string1 that consists
only of characters from s t r i n g 2. The terminating null character ('¥0') in s t r i n g 1 is not
included in the search range.

The strcspn function, which has the exactly opposite functionality, is also provided.

Return value

The strspn function returns the length of the substring from the start of string1 to the
position where the first character not in string2 appears.

This function returns zero if the first character of string1 does not occur in string2, or if
either string1 or string2 is the null string.

See also

strchr strrchr strpbrk strcspn

Chapter 2, Standard Built-In Routines Reference

2-92

Example

#include <string.h>

char string1[] = "ABCDEFGABCDEFG1234567";
char string2[] = "GFEDCBA";

void main(void)
{

size_t retval;

/*
This call returns 14, since the first character in
"ABCDEFGABCDEFG1234567" that is not a character in
"GFEDCBA" occurs at the fourteenth character.

*/
retval = strspn(string1 , string2);

/*
This call returns 0, since the character at the
start of "ABCDEFGABCDEFG1234567" is not a character
in the string "XYZ".

*/
retval = strspn(string1 , "XYZ");

}

Chapter 2, Standard Built-In Routines Reference

2-93

strstr Function

Function

This function searches for a substring in a character string.

Syntax

#include <string.h>

char *strstr(char *string1 , char *string2);

string1 String to be searched

string2 String to search for

Description

The strstr function searches for string2 in string1.

Return value

The strstr function returns a pointer to the first occurrence of string2 in string1.

This function returns NULL if string2 does not appear in string1, or if string1 is the null
string ("").

This function returns string1 if string2 is the null string.

See also

strcspn strspn strchr strrchr strpbrk

Chapter 2, Standard Built-In Routines Reference

2-94

Chapter 2, Standard Built-In Routines Reference

2-95

Example

#include <string.h>

char string[] =
/*
0 --- 1 --- 2 --- 3 --- 4
01234567890123456789012345678901234567890
*/
"WORD1 WORD2 WORD3 WORD4 ";

void main(void)
{

char *ptr;

/*
This call searches for "WORD1".
It returns string + 0.

*/
ptr = strstr(string , "WORD1");

/*
This call searches for "WORD2".
It returns string + 10.

*/
ptr = strstr(string , "WORD2");

/*
This call searches for "WORD3".
It returns string + 20.

*/
ptr = strstr(string , "WORD3");

/*
This call searches for "NOTHING".
Since it does not appear in the object string, it
returns NULL.

*/
ptr = strstr(string , "NOTHING");

}

strtod Macro/Function

Function

This routine converts a character string to a floating point number of type double.

Syntax

#include <stdlib.h>

double strtod(char *s, char **endptr);

s Character string to be converted

endptr Pointer that will point to the character where the scan stopped

Description

The strtod routine converts the string pointed to by s to a double precision floating point
number and returns that value. Note that the string s must conform to the following syntax.

[white space] [sign] [digit] [.] [digit] [{e |E} [sign] digit]

The symbols used have the following meanings.

Symbol Meaning

[white space] Some number of tabs and spaces (may be omitted)

[sign] Sign (may be omitted)

[digit] [.] [digit] Character string expressing a decimal fraction (may be omitted)

[{e |E} [sign] digit] Character string expressing the exponent (may be omitted)

At the point where strtod reads a character it can’t recognize, it stops scanning and if
endptr is non-null, it sets endptr to a pointer that indicates the position of that character.
Note that if the converted value is too large to be represented by the type d o u b l e, it
returns HUGE_VAL, and sets errno to ERANGE.

Return value

The strtod routine returns the value of the converted string in an object of type double.

See also

atof atoi atol strtol strtoul

Chapter 2, Standard Built-In Routines Reference

2-96

Example

#include <stdlib.h>

void main(void)
{

double res;
char *endp;

res = strtod("1.234e+6", &endp);
}

Chapter 2, Standard Built-In Routines Reference

2-97

Chapter 2, Standard Built-In Routines Reference

2-98

strtok Function

Function

This function breaks up a string into delimited tokens, and return the tokens in order.

Syntax

#include <string.h>

char *strtok(char *string1 , char *string2);

string1 Character string to be tokenized, or NULL

string2 Character string consisting of delimiters

Description

The term "token" as used here refers to substrings of string1 that consist of characters other
than characters from string2. Delimiter refers to the characters in string2. For example, if
the delimiters are space (' '), colon (':'), and period ('.'), and the string is "RTL665: Run
Time Library.", then the string would be broken up into the four tokens "RTL665", "Run",
"Time", and "Library".

The s t r t o k function breaks s t r i n g 1 up into tokens, taking the characters in s t r i n g 2 a s
delimiters. Pointers to the separated tokens can be acquired in order by sequential calls to
this function.

If strtok is called with a pointer to a string (i.e., not the null pointer) in string1, strtok
will read over any delimiters that may appear at the start of string1, and return a pointer to
the first token that appears in string1. A null character ('¥0') will be placed at the end of this
first token. NULL is returned if there are no tokens in string1.

If NULL is passed as string1 to strtok, it searches for the next token. If another token
exists, it returns a pointer to that token. A null character ('¥0') will be placed at the end of
this token. NULL is returned if there are no more tokens.

The strtok function is normally used as follows.

(1) The string to be broken down is passed as string1 and the first token is acquired.

(2) NULL is passed as string1, and the next token is acquired.

(3) Step (2) is repeated until NULL is returned.

The contents of string2 may be changed each time strtok is called. This function stores a
null character at the end of the token each time a token is discovered. Note that as a result,
string1 is modified.

Return value

The strtok function returns a pointer to a token as long as there are tokens remaining. It
returns NULL when there are no more tokens.

See also

strcspn strspn strchr strrchr strpbrk strstr

Chapter 2, Standard Built-In Routines Reference

2-99

Example

/*
This program breaks a string into tokens using spaces, commas,
semicolons, and colons as delimiters. Pointers to these tokens are
stored in token_stock[] in order.

*/
#include <string.h>

char string[] = " TOKEN1,TOKEN2; TOKEN3::TOKEN4 ";
char delimiter[] = " ,;:";

char *token_stock[20];

void main(void)
{

char *token_ptr;
int token_counter = 0;

/*
The first call. Returns a pointer to the first token,
TOKEN1.

*/
token_ptr = strtok(string , delimiter);

while (token_ptr != NULL)
{

token_stock[token_counter] = token_ptr;
/* Save the pointer to the token. */
++token_counter;
if (token_counter >= 20)

break;
/*

The second and later calls. NULL is passed as the first
argument. The calls to strtok return pointers to
TOKEN2, TOKEN3, and TOKEN4 in that order. The loop ends
when strtok finally returns NULL.

*/
token_ptr = strtok(NULL , delimiter);

}
/*

The result is as follows.
token_stock[0] :: "TOKEN1"
token_stock[1] :: "TOKEN2"
token_stock[2] :: "TOKEN3"
token_stock[3] :: "TOKEN4"
token_stock[4] :: NULL

string[] is changed to be the following.
" TOKEN1¥0TOKEN2¥0 TOKEN3¥0:TOKEN4¥0";

*/
}

Chapter 2, Standard Built-In Routines Reference

2-100

Chapter 2, Standard Built-In Routines Reference

2-101

strtol Macro/Function

Function

This routine converts character strings to integers of type long.

Syntax

#include <stdlib.h>

long strtol(char *s, char **endptr, int base);

s Character string to be converted

endptr Pointer that will point to the character where the scan stopped

base The radix

Description

The strtol routine converts the string pointed to by the argument s to an integer of type
long, and return that value. Note that the string must conform to the following syntax.

[white space] [sign] [0] [{x |X}] [digit]

The symbols used have the following meanings.

Symbol Meaning

[white space] Some number of tabs and spaces (may be omitted)

[sign] Sign (may be omitted)

[0] Zero (may be omitted)

[{x |X}] x or X (may be omitted)

[digit] A string of digits (may be omitted)

The strtol routine converts the string s in radix base as long as base is in the range 2 to
36. That is, if base is 16, the string is interpreted in base 16 and converted to a number, with
the characters '0' to '9', 'a' to 'f', and 'A' to 'F' recognized as digits. If base is 0, then the radix
is determined by the first one or two characters in the digit string. The table below shows
how the radix is determined.

First Character Second Character Conversion radix

0 1 to 7 Octal

0 x or X Hexadecimal

1 to 9 Decimal

Chapter 2, Standard Built-In Routines Reference

2-102

The strtol routine returns 0 if base is negative, 1, or greater than 36.

At the point where strtol reads a character it can’t recognize, it stops scanning and if
endptr is non-null, it sets endptr to a pointer that indicates the position of that character.
Note that if the acquired value cannot be represented by type long, strtol returns either
LONG_MAX or LONG_MIN and sets errno to ERANGE.

Return value

The strtol routine returns the converted value.

See also

atof atoi atol strtod strtoul

Example

#include <stdlib.h>

void main(void)
{

long res;
char *endp;

res = strtol("0xabcdef", &endp, 16);
}

Chapter 2, Standard Built-In Routines Reference

2-103

strtoul Macro/Function

Function

This routine converts character strings to integers of type unsigned long.

Syntax

#include <stdlib.h>

unsigned long strtoul(char *s, char **endptr, int base);

s Character string to be converted

endptr Pointer that will point to the character where the scan stopped

base The radix

Description

The strtoul routine converts the string pointed to by the argument s to an integer of type
unsigned long, and return that value. Note that the string must conform to the follow-
ing syntax.

[white space] [sign] [0] [{x |X}] [digit]

The symbols used have the following meanings.

Symbol Meaning

[white space] Some number of tabs and spaces (may be omitted)

[sign] Sign (may be omitted)

[0] Zero (may be omitted)

[{x |X}] x or X (may be omitted)

[digit] A string of digits (may be omitted)

The strtoul routine converts the string s in radix base as long as base is in the range 2 to
36. That is, if base is 16, the string is interpreted in base 16 and converted to a number, with
the characters '0' to '9', 'a' to 'f', and 'A' to 'F' recognized as digits. If base is 0, then the radix
is determined by the first one or two characters in the digit string. The table below shows
how the radix is determined.

First Character Second Character Conversion radix

0 1 to 7 Octal

0 x or X Hexadecimal

1 to 9 Decimal

The strtoul routine returns 0 if base is negative, 1, or greater than 36.

At the point where s t r t o u l reads a character it can’t recognize, it stops scanning and if
e n d p t r is non-null, it sets e n d p t r to a pointer that indicates the position of that character.
Note that if the acquired value cannot be represented by type unsigned long, s t r t o u l
returns ULONG_MAX and sets e r r n o to ERANGE.

Return value

The strtoul routine returns the converted value.

See also

atof atoi atol strtod strtol

Example

#include <stdlib.h>

void main(void)
{

unsigned long res;
char *endp;

res = strtoul("0xabcdef", &endp, 16);
}

Chapter 2, Standard Built-In Routines Reference

2-104

tan Function

Function

Computes the tangent of its argument.

Syntax

#include <math.h>

double tan(double x);

x An angle in radian units

Description

The tan function computes the tangent of the argument x.

Return value

The tan function returns the tangent of the argument x.

See also

acos asin atan atan2 cos sin

Example

#include <math.h>

void main(void)
{

double x;
double res;

x = 0.5;

res = tan(x);
}

Chapter 2, Standard Built-In Routines Reference

2-105

tanh Function

Function

Computes the hyperbolic tangent of its argument.

Syntax

#include <math.h>

double tanh(double x);

x An angle in radian units

Description

The tanh function computes the hyperbolic tangent (sinh(x)/cosh(x)) of the argument x.

Return value

The tanh function returns the hyperbolic tangent of the argument x.

See also

acos asin atan atan2 cos cosh sin sinh tan

Example

#include <math.h>

void main(void)
{

double x;
double res;

x = 0.5;

res = tanh(x);
}

Chapter 2, Standard Built-In Routines Reference

2-106

tolower Macro/Function

Function

Converts upper case characters to lower case characters.

Syntax

#include <ctype.h>

int tolower(int c);

c A single byte character (an integer in the range 0x00 to 0xff)

Description

The t o l o w e r routine converts c to lower case if it was an upper case character.
Otherwise, it returns c unchanged.

The behavior is undefined if c has a value outside the range 0x00 to 0xff.

Return value

If c is an upper case character, the tolower routine returns the corresponding lower case
character. For other values, it returns c unchanged.

The return value is undefined if c has a value outside the range 0x00 to 0xff.

See also

The is routines toupper

Chapter 2, Standard Built-In Routines Reference

2-107

Example

#include <ctype.h>

char buffer1[] = "0123456789ABCDEFGabcdefg";
char buffer2[64];

void main(void)
{

int i;

for (i = 0 ; buffer[i] != '¥0' ; ++i)
{

buffer2[i] = tolower(buffer1[i]);
}
/*

buffer2[] will have the following contents.
"0123456789abcdefgabcdefg"

*/

}

Chapter 2, Standard Built-In Routines Reference

2-108

toupper Macro/Function

Function

Converts lower case characters to upper case characters.

Syntax

#include <ctype.h>

int toupper(int c);

c A single byte character (an integer in the range 0x00 to 0xff)

Description

The toupper routine converts c to upper case if it was a lower case character. Otherwise,
it returns c unchanged.

The behavior is undefined if c has a value outside the range 0x00 to 0xff.

Return value

If c is a lower case character, the toupper routine returns the corresponding upper case
character. For other values, it returns c unchanged.

The return value is undefined if c has a value outside the range 0x00 to 0xff.

See also

The is routines tolower

Chapter 2, Standard Built-In Routines Reference

2-109

Example

#include <ctype.h>

char buffer1[] = "0123456789ABCDEFGabcdefg";
char buffer2[64];

void main(void)
{

int i;

for (i = 0 ; buffer1[i] != '¥0' ; ++i)
{

buffer2[i] = toupper(buffer1[i]);
}
/*

buffer2[] will have the following contents.
"0123456789ABCDEFGABCDEFG"

*/

}

Chapter 2, Standard Built-In Routines Reference

2-110

ultoa Function

Function

Converts an integer of type unsigned long to a character string in the specified radix.

Syntax

#include <stdlib.h>

char *ultoa(unsigned long number, char *s, int base);

number Value to be converted

s Buffer to store the converted string

base The radix in which to express number

Description

The ultoa function converts number to a null terminated string, and stores the result of
that conversion in s. The radix in which to express number is specified in base. The value
of base must be in the range 2 to 36. The ultoa function sets s to the null string if base is
less than 2 or greater than 36.

A buffer large enough to hold the converted string must be allocated for s. The maximum
length of a string created by ultoa, including the null character, is 33 bytes.

Return value

The ultoa function returns a pointer to the string s.

See also

itoa ltoa

Example

#include <stdlib.h>

char buf[33];

void main(void)
{

ultoa(2147483648, buf, 10);
}

Chapter 2, Standard Built-In Routines Reference

2-111

va_arg va_end va_start Macro

Function

These macros implement variable argument lists.

Syntax

#include <stdarg.h>

void va_start(va_list ap, lastfix);

type va_arg(va_list ap, type);

void va_end(va_list ap);

ap Pointer to the arguments

lastfix The name of the last fixed argument passed to the called function

type A data type name

Description

The v a _ a r g, v a _ e n d, and v a _ s t a r t macros allow operations on variable argument lists
to be implemented easily when creating functions that take a variable number of arguments.

The v a _ s t a r t macro sets a p to point to the start of variable argument list. The
va_start macro must be called first.

The v a _ a r g macro extracts the current argument as the type specified by t y p e, and
advances ap to the next argument. The type argument indicates the type that va_arg will
return. The ap argument must be the same ap as the ap that was initialized by va_start.

After all the arguments from the argument list have been read, the va_end macro arranges
that later processing will occur correctly. The v a _ e n d macro must be called last. The
behavior that follows is undefined if the va_macro is not called.

Return value

The va_start and va_end macros do not return values. The va_arg macro returns the
argument currently pointed to by ap.

See also

vsprintf

Chapter 2, Standard Built-In Routines Reference

2-112

Example

#include <stdarg.h>

int res;

void main(void)
{

res = total_fn(7, 1, 2, 3, 4, 5, 6, 7);
}

int total_fn(int num, ...)
{

va_list ap;
int cnt = 0;
int total = 0;

va_start(ap, num);
while (++cnt <= num)

total += va_arg(ap, int);
va_end(ap);
return (total);

}

Chapter 2, Standard Built-In Routines Reference

2-113

vsprintf Function

Function

This function formats data under the control of a format string and writes that formatted
data to a character string.

Syntax

#include <stdio.h>

int vsprintf(char *buffer, char *format, va_list arglist);

buffer Buffer to hold the output string

format Format string

arglist Argument list pointer

Description

The vsprintf function operates identically to sprintf except that instead of taking an
argument list, they take a r g l i s t, which is a pointer to an argument list. The v s p r i n t f
function converts arglist according to the conversion specifiers in the format string pointed
to by format, and write the output to the string pointed to by buffer.

See the description of sprintf for details on conversion specifiers and other aspects.

Return value

The vsprintf function returns the number of bytes output to buffer. It returns EOF if any
errors occur.

See also

sprintf va_arg va_end va_start

Chapter 2, Standard Built-In Routines Reference

2-114

Example

#include <stdio.h>
#include <stdarg.h>

int inum;
double dnum;
char buf[50];

void main(void)
{

inum = 127;
dnum = 123.45;

vsp(buf, "%d %f %s, inum, dnum, "Hello !!");
}

int vsp(char *s, char *fmt, ...)
{

va_list ap;
int cnt;

va_start(ap, fmt);
cnt = vsprintf(s, fmt, ap);
va_end(ap);
return (cnt);

}

Chapter 2, Standard Built-In Routines Reference

2-115

Chapter 3

Standard Input/Output
Routines Reference
This chapter describes the library routines that handle standard input/output. The routines are
ordered alphabetically.

If a call to a routine includes pointers to ROM (const char *, const void *, etc.) among its arguments
and the /WIN option is not specified, a special variant of the routine must be used. For further
details on the naming conventions for these variants, see the appendix “Routines Accessing ROM.”

If a call to a routine includes a pointer to a stream (FILE *) among its arguments, the only possibili-
ties for that stream are stdin, stdout, and stderr.

fgetc Function

Function

Gets a character from a stream.

Syntax

#include <stdio.h>

int fgetc(FILE * stream);

stream Pointer to a stream

Description

The fgetc function returns the next character from the specified input stream.

Return value

On success, fgetc returns the character it read converted to integer without sign exten-
sion. If the end of file is encountered or an error is detected, fgetc returns EOF.

See also

fputc getc getchar ungetc

Example

#include <stdio.h>

void main(void)
{

int c;

printf("Input a character : ");
c = fgetc(stdin);
printf("The character was : '%c' (%02x)\n", c, c);

}

Chapter 3, Standard Input/Output Routines Reference

3-1

fgets Function

Function

Gets a string from a stream.

Syntax

#include <stdio.h>

char *fgets(char *s, int n, FILE *stream);

s Pointer to the area that will store the string

n Number of characters to read

stream Pointer to a stream

Description

The fgets function reads a string from stream and stores it in s. The read will terminate
when n-1 characters are read or when a carriage return character is read. The fgets func-
tion will save the carriage return character at then end of s. It will add a null terminator to
the end of the characters read into s.

Return value

On success, fgets returns s. If the file ends or a file error occurs, then fgets returns
NULL.

See also

fputs gets

Example

#include <stdio.h>

void main(void)
{

char buf[80];

printf("Input a string : ");
fgets(buf, 80, stdin);
printf("The string was : %s\n", buf);

}

Chapter 3, Standard Input/Output Routines Reference

3-2

fprintf Function

Function

Sends formatted output to a stream.

Syntax

#include <stdio.h>

int fprintf(FILE * stream, char * format [,argument, ...]);

stream Pointer to a stream

format Format string

argument Argument corresponding to a conversion type specifier

Description

The fprintf function takes a list of arguments, converts them in accordance with corre-
sponding conversion type specifiers in the format string specified by format, and outputs
the formatted data to stream. The number of conversion type specifiers must be the number
of arguments.

Refer to the sprintf description for details on the conversion type specifiers.

Return value

The fprintf function returns the number of bytes output. If an error occurs, it will return
EOF.

See also

fscanf printf putc sprintf

Example

#include <stdio.h>

void main(void)
{

fprintf(stdout, "integer : %d\ncharacter : %c\n", 123, 'A') ;
}

Chapter 3, Standard Input/Output Routines Reference

3-3

fputc Function

Function

Outputs a character to a stream.

Syntax

#include <stdio.h>

int fputc(int c, FILE * stream);

c A character

stream Pointer to a stream

Description

The fputc function outputs the character c to the specified stream.

Return value

On success, fputc returns the character c. If an error occurs, it will return EOF.

See also

fgetc putc

Example

#include <stdio.h>

char s[] = "This is a test.\n";

void main(void)
{

int i;

for (i = 0; s[i] != '\0'; i++)
fputc(s[i], stdout);

}

Chapter 3, Standard Input/Output Routines Reference

3-4

fputs Function

Function

Outputs a string to a stream.

Syntax

#include <stdio.h>

int fputs(char * s, FILE * stream,);

s A string

stream Pointer to a stream

Description

The f p u t s function outputs the null-terminated string s to the specified output stream.
The fputs function does not add a carriage return character, and it does not output the
final null terminator.

Return value

On success, fputs returns a true value. On failure, it returns EOF.

See also

fgets gets puts

Example

#include <stdio.h>

void main(void)
{

fputs("This is a test.\n", stdout);
}

Chapter 3, Standard Input/Output Routines Reference

3-5

fscanf Function

Function

Scans and formats input from an input stream.

Syntax

#include <stdio.h>

int fscanf(FILE * stream, char * format [,address, ...]);

stream Pointer to a stream

format Format string

address Argument corresponding to a conversion type specifier

Description

The fscanf function scans a sequence of input fields from the stream, reading one charac-
ter at a time. It then formats each field in accordance with the conversion type specifiers in
the format string specified by format. Finally it stores the formatted input at the addresses
indicated by the arguments following f o r m a t. The number of formatting specifiers,
addresses, and input fields must all be the same.

The f s c a n f function may stop scanning certain fields before it encounters the normal
field terminating character (space). It may also stop input for various reasons.

Refer to the sscanf description for details on the conversion type specifiers.

Return value

The fscanf function returns the number of input fields correctly scanned, converted, and
stored. The return value will not include fields that did not store values.

See also

printf scanf sscanf

Chapter 3, Standard Input/Output Routines Reference

3-6

Example

#include <stdio.h>

void main(void)
{

int i;

printf("Input an integer : ");
if (fscanf(stdin, "%d", &i))

printf("The integer : %d\n",i);
else

printf("Cannot read an integer\n");
}

Chapter 3, Standard Input/Output Routines Reference

3-7

getc Macro/Function

Function

Gets a character from a stream.

Syntax

#include <stdio.h>

int getc(FILE * stream);

stream Pointer to a stream

Description

The getc routine reads the next character from the specified input stream, and increments
the stream's file pointer to point to the next character.

Return value

On success, getc returns the read character converted to an integer without sign extension.
If the file ends or an error occurs, then getc will return EOF.

See also

fgetc getchar gets putc putchar ungetc

Example

#include <stdio.h>

void main(void)
{

int c;

printf("Input a character : ");
c = getc(stdin);
printf("The character was : '%c' (%02x)\n", c, c);

}

Chapter 3, Standard Input/Output Routines Reference

3-8

getchar Macro/Function

Function

Gets a character from the standard input (stdin).

Syntax

#include <stdio.h>

int getchar(void);

Description

The g e t c h a r routine returns the next character from the input stream (s t d i n). The
value of getchar is the same as getc(stdin).

Return value

On success, g e t c h a r returns the read character converted to an integer without sign
extension. If the file ends or an error occurs, then getchar will return EOF.

See also

fgetc getc gets putc putchar scanf ungetc

Example

#include <stdio.h>

void main(void)
{

int c;

printf("Input a character : ");
c = getchar();
printf("The character was : '%c' (%02x)\n", c, c);

}

Chapter 3, Standard Input/Output Routines Reference

3-9

gets Function

Function

Reads a string from the standard input (stdin).

Syntax

#include <stdio.h>

char * gets(char * s);

s Pointer to an area that will store the string

Description

The gets function reads a string terminated by a carriage return character from the stan-
dard input stream (s t d i n) and stores it in s. The carriage return character will be
replaced by a null character in s.

The input string to gets may contain white space (spaces, tabs). The gets function will
stop reading when it encounters a carriage return character, and will copy all characters
read until that point to s.

Return value

On success, gets returns s. On an error, it will return NULL.

See also

fgets fputs getc puts scanf

Example

#include <stdio.h>

void main(void)
{

char buf[80];

printf("Input a string : ");
gets(buf);
printf("The string was : %s\n", buf);

}

Chapter 3, Standard Input/Output Routines Reference

3-10

printf Function

Function

Sends formatted output to the standard output.

Syntax

#include <stdio.h>

int printf(char * format [,argument, ...]);

format Format string

argument Argument corresponding to a conversion type specifier

Description

The p r i n t f function converts the arguments in accordance with corresponding conver-
sion type specifiers in the format string specified by format, and outputs the formatted data
to the standard output. The number of conversion type specifiers must be the number of
arguments.

Refer to the sprintf description for details on the conversion type specifiers.

Return value

The printf function returns the number of bytes output. If an error occurs, it will return
EOF.

See also

fprintf fscanf putc puts scanf sprintf vprintf vsprintf

Example

#include <stdio.h>

void main(void)
{

printf("integer : %d\n"
"floating point : %f\n"
"character : %c\n", 1234, 3.14, 'A');

}

Chapter 3, Standard Input/Output Routines Reference

3-11

putc Macro/Function

Function

Outputs a character to a stream.

Syntax

#include <stdio.h>

int putc(int c, FILE * stream);

c A character

stream Pointer to a stream

Description

The putc routine outputs the character c to the stream specified by stream.

Return value

On success, putc returns the output character c. If an error occurs, it will return EOF.

See also

fprintf fputc fputs getc getchar printf putchar

Example

#include <stdio.h>

char s[] = "This is a test.\n";

void main(void)
{

const char *p = s;

while (*p != '\0')
putc(*p++, stdout);

}

Chapter 3, Standard Input/Output Routines Reference

3-12

putchar Macro/Function

Function

Outputs a character to the standard output (stdout).

Syntax

#include <stdio.h>

int putchar(int c);

c A character

Description

The p u t c h a r routine outputs the character c to the standard output. The value of
putchar(c) is the same as putc(c,stdout).

Return value

On success, putchar returns the output character c. If an error occurs, it will return EOF.

See also

getc getchar printf putc puts

Example

#include <stdio.h>

const char s[] = "This is a test.\n";

void main(void)
{

const char *p = s;

while (*p != '\0')
putchar(*p++);

}

Chapter 3, Standard Input/Output Routines Reference

3-13

puts Function

Function

Outputs a string to the standard output (stdout).

Syntax

#include <stdio.h>

int puts(char * s);

s A string

Description

The p u t s functions outputs the null-terminated string s to the standard output stream
(stdout), and then outputs a carriage return character at the end.

Return value

On success, puts returns a true value. If an error occurs, it will return EOF.

See also

fputs gets printf putchar

Example

#include <stdio.h>

void main(void)
{

puts("This is a test.");
}

Chapter 3, Standard Input/Output Routines Reference

3-14

scanf Function

Function

Scans the standard input stream, and inputs with formatting.

Syntax

#include <stdio.h>

int scanf(, char * format [,address, ...]);

format Format string

address Argument corresponding to a conversion type specifier

Description

The s c a n f function scans a sequence of input fields from the standard input stream
(stdin), reading one character at a time. It then formats each field in accordance with
the conversion type specifiers in the format string specified by format. Finally it stores the
formatted input at the addresses indicated by the arguments following format. The number
of formatting specifiers, addresses, and input fields must all be the same.

Refer to the sscanf description for details on the conversion type specifiers.

Return value

The scanf function returns the number of input fields correctly scanned, converted, and
stored. The return value will not include fields that did not store values.

If scanf reads the end of file, then the return value will be EOF. If not even one field is
stored, then the return value will be 0.

See also

fscanf getc printf sscanf

Chapter 3, Standard Input/Output Routines Reference

3-15

Example

#include <stdio.h>

void main(void)
{

int i;

printf("Input an interger : ") ;
if (scanf("% d", &i))

printf("The integer : %d\n",i) ;
e l s e

printf("Cannot read an integer\n") ;
}

Chapter 3, Standard Input/Output Routines Reference

3-16

ungetc Function

Function

Pushes a character back in an input stream.

Syntax

#include <stdio.h>

int ungetc(int c, FILE * stream);

c A character

stream Pointer to a stream

Description

The u n g e t c function returns (pushes back) the character c to its specified source input
stream stream. The stream must not have been opened as read-only. The character c will
be returned from the s t r e a m with the next g e t c or f r e a d call. One character can be
pushed back while in any state. If ungetc is called twice without calling getc, then the
first character pushed back will be deleted. If fflush is called, then all pushed back char-
acters will be deleted from memory.

Return value

On success, ungetc returns the pushed-back character code. If the operation fails, then
ungetc will return EOF.

See also

getc

Chapter 3, Standard Input/Output Routines Reference

3-17

Example

#include <stdio.h>
#include <ctype.h>

void main(void)
{

int i = 0;
int c;

printf("Input an integer : ") ;
while ((c = getchar()) != '\ n' && isdigit(c))

i = 10 * i + c - '0';
ungetc(c, stdin);
printf("i : %d, push back character : %c\n", i, getchar());

}

Chapter 3, Standard Input/Output Routines Reference

3-18

vfprintf Function

Function

Writes formatted output to a stream.

Syntax

#include <stdio.h>

int vfprintf(FILE * stream, char * format, va_list arglist);

stream Pointer to a stream

format Format string

arglist Pointer to argument list

Description

The vfprintf function operates the same as printf, but instead of taking an argument
list, it takes a pointer to an argument list.

The v f p r i n t f function takes a pointer to a list of arguments, converts them in accor-
dance with corresponding conversion type specifiers in the format string specified by
format, and outputs the formatted data to stream. The number of conversion type specifiers
must be the number of arguments.

Refer to the sprintf description for details on the conversion type specifiers.

Return value

The v f p r i n t f function returns the number of bytes output. If an error occurs, it will
return EOF.

See also

fprintf va_arg va_end va_start vprintf vsprintf

Chapter 3, Standard Input/Output Routines Reference

3-19

Example

#include <stdio.h>
#include <stdarg.h>

int vfprn(char * fmt, ...)
{

va_list ap;
int cnt;

va_start(ap, fmt);
cnt = vfprintf(stdout, fmt, ap);
va_end(ap);

}

void main(void)
{

vfprn("integer : %d\n"
"floating point : %f\n"
"character : %c\n", 1234, 3.14, 'A') ;

}

Chapter 3, Standard Input/Output Routines Reference

3-20

vprintf Function

Function

Writes formatted output.

Syntax

#include <stdio.h>

int vprintf(char * format, va_list arglist);

format Format string

arglist Pointer to argument list

Description

The vprintf function operates the same as printf, but instead of taking an argument
list, it takes a pointer to an argument list.

The vprintf function takes a pointer to a list of arguments, converts them in accordance
with corresponding conversion type specifiers in the format string specified by format, and
outputs the formatted data to stream. The number of conversion type specifiers must be the
number of arguments.

Refer to the sprintf description for details on the conversion type specifiers.

Return value

The vprintf function returns the number of bytes output. If an error occurs, it will return
EOF.

See also

printf va_arg va_end va_start vfprintf vsprintf

Chapter 3, Standard Input/Output Routines Reference

3-21

Example

#include <stdio.h>
#include <stdarg.h>

int vprn(const char * fmt, ...)
{

va_list ap;
int cnt;

va_start(ap, fmt);
cnt = vprintf(fmt, ap);
va_end(ap);

}

void main(void)
{

vprn("integer : %d\n"
"floating point : %f\n"
"character : %c\n", 1234, 3.14, 'A') ;

}

Chapter 3, Standard Input/Output Routines Reference

3-22

Appendix

Routines Accessing Rom
OLMS-66K series microcontrollers use separate address spaces for program memory (ROM) and
data memory (RAM). The CC665S language specifications assign data objects to these two address
spaces according to the presence or absence of the const modifier. Objects with the modifier go into
ROM; those without, into RAM.

Let us consider how functions which take pointers as arguments—s t r c p y(char *s t r i n g 1, char
*string2), for example—access variables with the const modifier.

■ Example ■

char ram_data[128];
const char rom_data[] = "sample";
fn()
{

strcpy(ramdata, rom_data);
}

Using CC665S’s /WIN option assigns variables with the const modifier to the ROM WINDOW
area, where the functions can access them with data memory addressing, so there is no problem.
Omitting the /WIN option, however, places the two pointers in different address spaces which can-
not be accessed simultaneously. Without fail, the code in the example will produce erratic results.

RTL665S copes with this problem of two different address spaces by providing special versions of
the ANSI/ISO 9899 C standard library routines for calls accessing ROM.

• If routines taking pointers as arguments have names matching those in the standard, the pointers
are always for the data memory space.

• Routines with names made up of a name from the standard plus a suffix starting with an under-
score (_) include pointers to program memory (ROM) among their arguments. The suffixes have
the following meanings.

Appendix

A-1

Suffixes and Their Meanings

Memory Space Accessed

Number of Pointer
Suffix Arguments First Pointer Argument Subsequent Arguments

_c 1 ROM

_cc Two or more ROM ROM

_cd Two or more ROM RAM

_dc Two or more RAM ROM

Let us consider some examples.

First, atol, a function with one pointer argument, has the following variants.

atol(s) s is a pointer to RAM.

atol_c(s) s is a pointer to ROM.

strcmp, a function with two pointer arguments, has the following variants.

strcmp(s1 , s2) s1 and s2 are both pointers to RAM.

strcmp_cc(s1 , s2) s1 and s2 are both pointers to ROM.

strcmp_cd(s1 , s2) s1 is a pointer to ROM; s2, a pointer to RAM.

strcmp_dc(s1 , s2) s1 is a pointer to RAM; s2, a pointer to ROM.

Appendix

A-2

■ Example ■

The following program shows examples of proper usage, improper usage, and improper casts. The
explanation assumes that CC665S’s /WIN option is not specified.

#include <string.h>
char *ramstr1
char *ramstr2

const char *romstr1
const char *romstr2

void func(void)
{

.

.

.
/* Correct usage */
strcmp(ramstr1 , ramstr2);
strcmp_cc(romstr1 , romstr2);
strcmp_cd(romstr1 , ramstr2);
strcmp_dc(ramstr1 , romstr2);
.
.
.
/* Incorrect usage */
strcmp(romstr1 , romstr2);
strcmp_cc(ramstr1 , ramstr2);
.
.
.

/* Improper casts */
strcmp((char *)romstr1 , (char *)romstr2);
.
.
.

}

Casts of the type shown in the last example are particularly dangerous. The source statements are
grammatically correct, so CC665S does not issue any error message. Since the program then inter-
prets pointers to one area (ROM) as pointers to a totally separate area (RAM), it will produce erratic
results without fail.

Appendix

A-3

Routines for Accessing ROM with Pointers
The following is a listing of the ANSI/ISO 9899 C standard library routines and their variants.

Routine Syntax

atof double atof(char *s);

double atof_c(const char *s);

atoi int atoi(char *s);

int atoi_c(const char *s);

atol long atol(char *s);

long atol_c(const char *s);

bsearch void *bsearch(void *key, void *base, size_t nelem, size_t size,

int(*cmp)(void *, void *));

void *bsearch_cc(const void *key, const void *base, size_t nelem, size_t size,

int(*cmp_cc)(const void *, const void *));

void *bsearch_cd(const void *key, void *base, size_t nelem, size_t size,

int(*cmp_cd)(const void *, void *));

void *bsearch_dc(void *key, const void *base, size_t nelem, size_t size,

int(*cmp_dc)(void *, const void *));

fprintf int fprintf(FILE *stream, char *format [, argument, ...]);

int fprintf_dc(FILE *stream, const char *format [, argument, ...]);

fputs int fputs(char *s, FILE *stream);

int fputs_c(const char *s, FILE *stream);

fscanf int fscanf(FILE *stream, char *format [, address, ...]);

int fscanf_dc(FILE *stream, const char *format [, address, ...]);

Appendix

A-4

Routine Syntax

memchr void *memchr(void *region, int c, size_t count);

void *memchr_c(const void *region, int c, size_t count);

memcmp int memcmp(void *region1, void *region2, size_t count);

int memcmp_cc(const void *region1, const void *region2, size_t count);

int memcmp_cd(const void *region1, void *region2, size_t count);

int memcmp_dc(void *region1, const void *region2, size_t count);

memcpy void *memcpy(void *dest, void *src, size_t count);

void *memcpy_dc(void *dest, const void *src, size_t count);

printf int printf(char *format [, argument, ...]);

int printf_c(const char *format [, argument, ...]);

puts int puts(char *s);

int puts_c(const char *s);

scanf int scanf(char *format [, address, ...]);

int scanf_c(const char *format [, address, ...]);

sprintf int sprintf(char *buffer, char *format [, argument, ...]);

int sprintf_dc(char *buffer, const char *format [, argument, ...]);

sscanf int sscanf(char *string, char *format [, address, ...]);

int sscanf_cc(const char *string, const char *format [, address, ...]);

int sscanf_cd(const char *string, char *format [, address, ...]);

int sscanf_dc(char *string, const char *format [, address, ...]);

strcat char *strcat(char *string1, char *string2);

char *strcat_dc(char *string1, const char *string2);

strchr char *strchr(char *string, int c);

const char *strchr_c(const char *string, int c);

Appendix

A-5

Routine Syntax

strcmp int strcmp(char *string1, char *string2);

int strcmp_cc(const char *string1, const char *string2);

int strcmp_cd(const char *string1, char *string2);

int strcmp_dc(char *string1, const char *string2);

strcpy char *strcpy(char *string1, char *string2);

char *strcpy_dc(char *string1, const char *string2);

strcspn size_t strcspn(char *sting1, char *string2);

size_t strcspn_cc(const char *sting1, const char *string2);

size_t strcspn_cd(const char *sting1, char *string2);

size_t strcspn_dc(char *sting1, const char *string2);

strlen size_t strlen(char *string).

size_t strlen_c(const char *string).

strncat char *strncat(char *string1, char *string2, size_t count);

char *strncat_dc(char *string1, const char *string2, size_t count);

strncmp int strncmp(char *string1, char *string2, size_t count);

int strncmp_cc(const char *string1, const char *string2, size_t count);

int strncmp_cd(const char *string1, char *string2, size_t count);

int strncmp_dc(char *string1, const char *string2, size_t count);

strncpy char *strncpy(char *string1, char *string2, size_t count);

char *strncpy_dc(char *string1, const char *string2, size_t count);

strpbrk char *strpbrk(char *string1, char *string2);

const char *strpbrk_cc(const char *string1, const char *string2);

const char *strpbrk_cd(const char *string1, char *string2);

char *strpbrk_dc(char *string1, const char *string2);

Appendix

A-6

Routine Syntax

strrchr char *strrchr(char *string, int c);

char *strrchr_c(const char *string, int c);

strspn size_t strspn(char *string1, char *string2);

size_t strspn_cc(const char *string1, const char *string2);

size_t strspn_cd(const char *string1, char *string2);

size_t strspn_dc(char *string1, const char *string2);

strstr char *strstr(char *string1, char *string2);

const char *strstr_cc(const char *string1, const char *string2);

const char *strstr_cd(const char *string1, char *string2);

char *strstr_dc(char *string1, const char *string2);

strtod double strtod(char *s, char **endptr);

double strtod_c(const char *s, const char **endptr);

strtok char *strtok(char *string1, char *string2);

char *strtok_dc(char *string1, const char *string2);

strtol long strtol(char *s, char **endptr, int base);

long strtol_c(const char *s, const char **endptr, int base);

strtoul unsigned long strtoul(char *s, char **endptr, int base);

unsigned long strtoul_c(const char *s, const char **endptr, int base);

vfprintf int vfprintf(FILE *stream, char *format, va_list arglist);

int vfprintf_dc(FILE *stream, const char *format, va_list arglist);

vprintf int vprintf(char *format, va_list arglist);

int vprintf_c(const char *format, va_list arglist);

vsprintf int vfprintf(char *buffer, char *format, va_list arglist);

int vfprintf_dc(char *buffer, const char *format, va_list arglist);

Appendix

A-7

Appendix

A-8

Addendum

Low-Level Routines
Programs using RTL665S’s standard I/O routines must link in certain low-level routines.

This addendum describes these low-level routines called by the standard I/O routines.

Addendum

B-1

Introduction
Low-level routines are hardware-dependent routines that are normally called indirectly via library
routines. Since the routines described in chapter 3 “Standard Input/Output Routines Reference” of
the RTL665S Run-Time Library Reference call these low-level routines internally, the latter must
be specified at link time. The following chart lists the library routines calling these low-level rou-
tines.

Standard I/O Routines Necessary Low-Level Routines

fgetc, fgets, fscanf, getc, getchar, gets, scanf read

fprintf, fputc, fputs, printf, putc, putchar, puts, vfprintf, vprintf write

We supply sample versions of these low-level routines (read and write) to support standard input
and output. Since such routines are highly hardware dependent, however, these sample routines may
not always work. It is the user’s responsibility to modify or even rewrite the routines to match the
user’s environment.

When modifying or rewriting these low-level routines, use the specifications starting on the next
page.

Addendum

B-2

Specifications for Low-Level Routines

read

Function

Reads from a file.

Syntax

int read(int handle, unsigned char *buffer, int len);

handle Handle for an open file

buffer Pointer to memory area for storing the data

len Maximum number of bytes to read

Description

read attempts to read len bytes from the file associated with handle into the buffer pointed
to by buffer.

The sample routine takes len bytes from the serial port’s receive buffer and stores them in
the buffer pointed to by buffer.

Return value

read returns an integer indicating the number of bytes placed in the buffer.

The sample routine contains absolutely no error processing. Expand it to return 0 on end-of-
file (Ctrl-Z) and to return –1 on error.

See also

write

write

Function

Writes to a file.

Syntax

int write(int handle, unsigned char *buffer, int len);

handle Handle for an open file

buffer Pointer to memory area holding the data

len maximum number of bytes to write

Description

write attempts to write len bytes from the buffer pointed to by buffer to the file associated
with handle.

The sample routine takes len bytes from the buffer pointed to by buffer and stores them in
the serial port’s transmit buffer.

Return value

write returns an integer indicating the number of bytes written.

The sample routine contains absolutely no error processing. Expand it to return –1 on error.

See also

read

Addendum

B-3

Appendix

B-4

	Cover
	Contents
	Introduction
	1 Overview
	1.1 RTL665S Run-Time Library Organization
	1.1.1 Header Files
	1.1.2 Library Files

	1.2 Compatibility with the ANSI/ISO 9899 C Standard
	1.3 Using the Library Routines
	1.3.1 Setting the INCL66K Environment Variable
	1.3.2 Program Notation
	1.3.3 The procedure from Compilation through Linking

	1.4 Role of Header Files
	1.4.1 Inclusion of Macros, Constants, and Types
	1.4.2 Inclusion of Function prototype declarations

	1.5 Functions and Macros
	1.5.1 Differences between Functions and Macros
	1.5.2 Calling Routines with Macro Definitions as Functions

	1.6 Reentrant Routines
	1.7 Header File Contents
	1.7.1 Character Classification and Convention <ctype.h>
	1.7.2 Error Identification <errno.h>
	1.7.3 Floating Point Limits <float.h>
	1.7.4 Integer limits <limits.h>
	1.7.5 Mathematical Functions <math.h>
	1.7.6 Global Jump <setjmp.h>
	1.7.7 Variable Arguments <stdarg.h>
	1.7.8 General definitions <stddef.h>
	1.7.9 Input/Output processing <stdio.h>
	1.7.10 General Utilities <stdlib.h>
	1.7.11 String Handling <string.h>

	1.8 Using the Run-Time Library Reference

	2 Standard Built-In Routines Reference
	abs
	acos
	asin
	atan
	atan2
	atof
	atoi
	atol
	bsearch
	calloc
	ceil
	cos
	cosh
	div
	exp
	fabs
	floor
	fmod
	free
	frexp
	isalnum ... isxdigit
	itoa
	labs
	ldexp
	ldiv
	log
	log10
	longjmp
	ltoa
	malloc
	memchr
	memcmp
	memcpy
	memmove
	memset
	modf
	offsetof
	pow
	qsort
	rand
	realloc
	setjmp
	sin
	sinh
	sprintf
	sqrt
	srand
	sscanf
	strcat
	strchr
	strcmp
	strcpy
	strcspn
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	strtoul
	tan
	tanh
	tolower
	toupper
	ultoa
	va_arg va_end va_start
	vsprintf

	3 standard Input/Output Routines Reference
	fgetc
	fgets
	fprintf
	fputc
	fputs
	fscanf
	getc
	getchar
	gets
	printf
	putc
	putchar
	puts
	scanf
	ungetc
	vfprintf
	vprintf

	Appendix
	Routines Accessing ROM
	Routines for Accessing ROM with Pointers

	Low-Level Routines
	Introduction
	Specifications for Low-Level Routines
	read
	write

