OKI Semiconductor

MSM7541/7542

Single Rail CODEC

GENERAL DESCRIPTION

The MSM7541 and MSM7542 are single-channel CODEC CMOS ICs for voice signals ranging from 300 to 3400 Hz. These devices contain filters for A/D and D/A conversion.

Designed especially for a single-power supply and low-power applications, these devices are optimized for telephone terminals in digital wireless systems.

The MSM7541 and MSM7542 use newly designed operational amplifiers to maintain small current deviations caused by power voltage fluctuations.

The devices use the same transmission clocks as those used in the MSM7508B and MSM7509B. The analog output signal, which is of a differential type, directly drives a piezoelectric type handset receiver.

FEATURES

• Single power supply: +3.0 V to +3.8 V

• Low power consumption	tion	
Operating mode:	23 mW Typ.	$V_{DD} = 3.3 V$
Power save mode:	1 mW Typ.	V _{DD} = 3.3 V
Power down mode:	0.04 mW Typ.	$V_{DD} = 3.3 V$

ITU-T Companding law

MSM7541: μ-law MSM7542: A-law

- Built-in PLL eliminates a master clock
- Serial data rate: 64/128/256/512/1024/2048 kHz 96/192/384/768/1536/1544/200 kHz
- Adjustable transmit gain
- Adjustable receive gain
- Built-in reference voltage supply
- Built-in analog loop back test mode
- Differential type analog output. Directly drives a piezoelectric type receiver equivalent to 1.2 $k\Omega$ + 55 nF

•	Package options:	
	20-pin plastic skinny DIP (DIP20-P-300-2.54-S1)	(Product name : MSM7541RS)
		(Product name : MSM7542RS)
	24-pin plastic SOP (SOP24-P-430-1.27-K)	(Product name : MSM7541GS-K)
		(Product name : MSM7542GS-K)
	26-pin plastic TSOP (TSOPII26/20-P-300-1.27-K)	(Product name : MSM7541TS-K)
		(Product name : MSM7542TS-K)

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

20-Pin Plastic Skinny DIP

PIN AND FUNCTIONAL DESCRIPTIONS

AIN+, AIN-, GSX

Transmit analog input and transmit level adjustment.

AIN+ is a non-inverting input to the op-amp; AIN– is an inverting input to the op-amp; GSX is connected to the output of the op-amp and is used to adjust the level, as shown below. When not using AIN– and AIN+, connect AIN– to GSX and AIN+ to SG. During power saving and power down modes, the GSX output is at AG voltage.

AG

Analog signal ground.

VFRO

Receive filter output.

The output signal has an amplitude of 2.0 V_{PP} above and below the signal ground voltage (SG) when the digital signal of +3 dBmO is input to PCMIN and can drive a load of 20 k Ω or more. For driving a load of 20 k Ω or less, the output signal of AOUT+ and AOUT- is available. To apply the output signal of AOUT+ and AOUT- for driving, connect a resistor of 20 k Ω or more between the pins VFRO and PWI.

When adding the frequency characteristics to the receive signal, refer to the application example. During power saving or power down mode, the output of VFRO is at the voltage level of AG.

PWI, AOUT+, AOUT-

PWI is connected to the inverting input of the receive driver. The receive driver output is connected to the AOUT– pin. Therefore, the receive level can be adjusted with the pins VFRO, PWI, and AOUT–. When the PWI pin is not used, connect the PWI pin to the AOUT– pin, and leave open the pins AOUT– and AOUT+. The output of AOUT+ is inverted with respect to the output of AOUT–. Since the signal from which provides differential drives of an impedance of 1.2 k Ω + 55 nF, these outputs can directly be connected to a receiver of handset using a piezoelectric earphone. Refer to the application example.

 $\begin{array}{l} \mathsf{R6} > 20 \; \mathsf{k}\Omega \\ \mathsf{ZL} \geq 2.4 \; \mathsf{k}\Omega \end{array}$

Gain = V0/VI = $2 \times R7/R6 \le 2$

During power saving and power down modes, the outputs of AOUT+ and AOUT- are in a high impedance state.

The electrical driving capability of the AOUT– pin and AOUT+ pin is ± 1.3 V maximum. The output load resistor has a minimum value of 1.2 k Ω .

If an output amplitude less than ±1.3 V is allowed, these outputs can drive a load resistance less than that described above.

For more details, refer to SINGLE POWER SUPPLY PCM CODEC APPLICATION NOTE.

V_{DD}

Power supply for +3.0 V to +3.8 V. (Typically 3.3 V)

PCMIN

PCM signal input.

A serial PCM signal input to this pin is converted to an analog signal in synchronization with the RSYNC signal and BCLOCK signal.

The data rate of the PCM signal is equal to the frequency of the BCLOCK signal.

The PCM signal is shifted at a falling edge of the BCLOCK signal and latched into the internal register when shifted by eight bits.

The start of the PCM data (MSD) is identified at the rising edge of RSYNC.

BCLOCK

Shift clock signal input for the PCMIN and PCMOUT signal.

The frequency, equal to the data rate, is 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 1544, 2048, or 200 kHz. Setting this signal to logic "1" or "0" drives both transmit and receive circuits to the power saving state.

RSYNC

Receive synchronizing signal input.

Eight required bits are selected from serial PCM signals on the PCMIN pin by the receive synchronizing signal.

Signals in the receive section are synchronized by this synchronizing signal. This signal must be synchronized in phase with the BCLOCK. The frequency should be $8 \text{ kHz} \pm 50 \text{ ppm}$ to guarantee the AC characteristics which are mainly the frequency characteristics of the receive section.

However, if the frequency characteristic of an applied system is not specified exactly, this device can operate in the range of 8 kHz ±2 kHz, but the electrical characteristics in this specification are not guaranteed.

XSYNC

Transmit synchronizing signal input.

The PCM output signal from the PCMOUT pin is output in synchronization with this transmit synchronizing signal. This synchronizing signal triggers the PLL and synchronizes all timing signals of the transmit section.

This synchronizing signal must be synchronized in phase with BCLOCK.

The frequency should be 8 kHz \pm 50 ppm to guarantee the AC characteristics which are mainly the frequency characteristics of the transmit section.

However, if the frequency characteristic of an applied system is not specified exactly, this device can operate in the range of $8 \text{ kHz} \pm 2 \text{ kHz}$, but the electrical characteristics in this specification are not guaranteed.

Setting this signal to logic "1" or "0" drives both transmit and receive circuits to the power saving state.

тмс

Control signal input for mode selection.

This pin select the normal operating mode or the analog loop-back mode.

In the analog loop-back mode, the receive filter output is connected to the transmit filter input and the digital signal input to the PCMIN pin is converted from a digital to an analog signal (D/ A conversion). Next, the analog signal is converted to a digital signal (A/D conversion) through the receive filter and transmit filter. The result is output to the PCMOUT pin.

When in the analog loop-back mode, the VFRO pin outputs the SG level. (signal ground)

TMC Input	Mode
$< 0.16 \times V_{DD}$	Normal operation
> 0.45 × V _{DD}	Analog loop-back

DG

Ground for the digital signal circuits.

This ground is separate from the analog signal ground. The DG pin must be connected to the AG pin on the printed circuit board to make a common analog ground.

PDN

Power down control signal.

A logic "0" level drives both transmit and receive circuits to a power down state.

PCMOUT

PCM signal output.

The PCM output signal is output from MSD in a sequential order, synchronizing with the rising edge of the BCLOCK signal.

MSD may be output at the rising edge of the XSYNC signal, based on the timing between BCLOCK and XSYNC.

This pin is in a high impedance state except during 8-bit PCM output. It is also in a high impedance state during power saving or power down modes.

A pull-up resistor must be connected to this pin because its output is configured as an open drain. This device is compatible with the ITU-T recommendation on coding law and output coding format.

The MSM7542(A-law) outputs the character signal, inverting the even bits.

land the state of	PCMIN/PCMOUT							
Input/Output Level	MSM7541 (μ-law)	MSM7542 (A-law)						
. Full coolo	MSD	MSD						
+Full scale	1 0 0 0 0 0 0	1 0 1 0 1 0 1 0						
+0	1 1 1 1 1 1 1 1	1 1 0 1 0 1 0 1						
-0	0 1 1 1 1 1 1 1	0 1 0 1 0 1 0 1						
–Full scale	0 0 0 0 0 0 0 0	0 0 1 0 1 0 1 0						

SG

Signal ground voltage output. The output voltage is 1/2 of the power supply voltage. The output drive current capability is $\pm 200 \ \mu$ A. This pin provides the SG level for CODEC peripherals. This output voltage level is undefined during power saving or power down modes.

SGC

Used to generate the signal ground voltage level by connecting a bypass capacitor. Connect a $0.1\,\mu F$ capacitor with excellent high frequency characteristics between the AG pin and the SGC pin.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V _{DD}	_	0 to 7	V
Analog Input Voltage	V _{AIN}	—	-0.3 to V _{DD} + 0.3	V
Digital Input Voltage	V _{DIN}	_	-0.3 to V _{DD} + 0.3	V
Storage Temperature	T _{STG}	_	-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Power Supply Voltage	V _{DD}	Voltage must be fixed	3.0	3.3	3.8	V
Operating Temperature	Та	_	-30	+25	+85	°C
Analog Input Voltage	VAIN	Connect AIN– and GSX	_	_	1.4	V_{PP}
Digital Input High Voltage	VIH	XSYNC, RSYNC, BCLOCK,	$0.45 imes V_{DD}$	—	V _{DD}	V
Digital Input Low Voltage	VIL	PCMIN, PDN, TMC	0		$0.16 imes V_{DD}$	V
Clock Frequency	Fc	BCLOCK 2048, 96, 192, 384, 768, 1536, 1544, 200				kHz
Sync Pulse Frequency	F _S	XSYNC, RSYNC	6.0	8.0	10.0	kHz
Clock Duty Ratio	D _C	BCLOCK	40	50	60	%
Digital Input Rise Time	t _{ir}	XSYNC, RSYNC, BCLOCK,	_	_	50	ns
Digital Input Fall Time	t _{lf}	PCMIN, PDN, TMC		_	50	ns
	t _{XS}	BCLOCK→XSYNC, See Timing Diagram	100	_	_	ns
Transmit Sync Pulse Setting Time	t _{SX}	XSYNC—BCLOCK, See Timing Diagram	100	_	_	ns
Dessive Curs Dules Cotting Time	t _{RS}	BCLOCK→RSYNC, See Timing Diagram	100	_	_	ns
Receive Sync Pulse Setting Time	t _{SR}	RSYNC→BCLOCK, See Timing Diagram	100	_	_	ns
Sync Pulse Width	t _{WS}	XSYNC, RSYNC	1 BCLK		100	μs
PCMIN Set-up Time	t _{DS}	—	100		—	ns
PCMIN Hold Time	t _{DH}	_	100	_	_	ns
Digital Output Load	R _{DL}	Pull-up resistor	0.5			kΩ
Digital Output Load	C _{DL}	_	_		100	pF
Analog Input Allowable DC Offect	N	Transmit gain stage, Gain = 1	-100	_	+100	mV
Analog Input Allowable DC Offset	V _{off}	Transmit gain stage, Gain = 10	-10	_	+10	mV
Allowable Jitter Width		XSYNC, RSYNC, BCLOCK	_		500	ns

ELECTRICAL CHARACTERISTICS

DC and Digital Interface Characteristics

$(V_{DD} = 3.0 \text{ V to } 3.8 \text{ V}, \text{ Ia} = -30^{\circ}\text{C to } +85^{\circ}$									
Parameter	Symbol	Conc	Min.	Тур.	Max.	Unit			
	I _{DD1}	Operating mode	V _{DD} = 3.8 V	—	10.0	12.0	mA		
	I _{DD4}	Operating mode	V _{DD} = 3.3 V	—	7.0	9.0	mA		
Power Supply Current	$\label{eq:constraint} \begin{tabular}{ c c c c c c c } \hline I_{DD1} & I_{DD1} & Operating mode & \hline V_{DD} = 3.8 \ V \\ \hline I_{DD4} & Operating mode & \hline V_{DD} = 3.8 \ V \\ \hline V_{DD} = 3.3 \ V \\ \hline V_{DD} = 3.8 \ V \\ \hline V_{DD} =$		_	0.3	1.0	mA			
	I _{DD3}	Power-down m	—	5	50	μA			
Input High Voltage	V _{IH}	_	$0.45 imes V_{DD}$	_	V _{DD}	V			
Input Low Voltage	VIL	-	0.0	—	0.16 × V _{DD}	V			
High Level Input Leakage Current	I _{IH}	-	_		—	2.0	μA		
Low Level Input Leakage Current	IIL	_			—	0.5	μA		
Digital Output Low Voltage	V _{OL}	Pull-up resistance > 500 Ω		0.0	0.2	0.4	V		
Digital Output Leakage Current	I ₀	—		_		10	μA		
Input Capacitance	C _{IN}	_	_		5	—	pF		

Transmit Analog Interface Characteristics

(Vpp -	3.0 V to	3 8 V	Ta – –	30°C to	±85°C)
(vDD =	3.0 V l0	J.O V,	1a = -	50 0 10	+05 0)

Parameter	Symbol	Cond	Min.	Тур.	Max.	Unit	
Input Resistance	R _{INX}	AIN+, AIN–	10	_		MΩ	
Output Load Resistance	R _{LGX}	GSX with respe	20	_		kΩ	
Output Load Capacitance	CLGX			—	_	50	pF
Output Amplitude	V _{OGX}			-0.7	_	+0.7	V
Offset Voltage	V _{OSGX}		Gain = 1	-20	_	+20	mV

Receive Analog Interface Characteristics

(V_{DD} = 3.0 V to 3.8 V, Ta = -30°C to +85°C)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Resistance	RINPW	PWI	10			MΩ
	R _{LVF}	VFRO with respect to SG	20		_	kΩ
Output Load Resistance	R _{LAO}	AOUT+, AOUT– (each) with respect to SG	1.2	_	—	kΩ
	C _{LVF}	VFRO			100	pF
Output Load Capacitance	CLAO	AOUT+, AOUT-			50	pF
Outrat Arralitada	V _{OVF}	VFRO, $R_L = 20 \text{ k}\Omega$ with respect to SG	-1.0		+1.0	V
Output Amplitude	V _{OAO}	AOUT+, AOUT–, $R_L = 1.2 \text{ k}\Omega$ with respect to SG	-1.3	_	+1.3	V
	V _{OSVF}	VFRO with respect to SG	-100		+100	mV
Offset Voltage	Vosao	AOUT+, AOUT–, Gain = 1 with respect to SG	-100	_	+100	mV

AC Characteristics

	1 1			(VDD	= 3.0 V to	3.8 V, Ia =	= -30°C to	+85°0)	
Parameter	Symbol	Freq. (Hz)	Level (dBm0)	Condition	Min.	Тур.	Max.	Unit	
	Loss T1	60	60	60		20	26		dB
	Loss T2	300			-0.15	+0.1	+0.20	dB	
Transmit Frequency Response	Loss T3	1020	0			Reference		dB	
Transmit Frequency Response	Loss T4	2020	U		-0.15	—	+0.20	dB	
	Loss T5	3000			-0.15		+0.20	dB	
	Loss T6	3400			0	_	0.80	dB	
	Loss R1	300			-0.15	—	+0.20	dB	
	Loss R2	1020				Reference		dB	
Receive Frequency Response	Loss R3	2020	0		-0.15	_	+0.20	dB	
	Loss R4	3000			-0.15		+0.20	dB	
	Loss R5	3400			0.0	_	0.80	dB	
	SD T1		3		35	43			
	SD T2		0		35	42			
Transmit Signal to Distortion Ratio	SD T3	1020	-30		35	39	_	dB	
	SD T4		-40	*1	28	30.5			
	SD T5		-45		23	25	—		
	SD R1		3		36	43	_		
	SD R2		0		36	41			
Receive Signal to Distortion Ratio	SD R3	1020	-30		36	41		dB	
	SD R4		-40	*1	30	33	_		
	SD R5		-45		24	27			
	GT T1		3		-0.2	0	+0.2		
	GT T2		-10			Reference			
Transmit Gain Tracking	GT T3	1020	-40		-0.2	-0.02	+0.2	dB	
	GT T4		-50		-0.5	+0.2	+0.5		
	GT T5		-55		-1.2	+0.4	+1.2		
	GT R1		3		-0.2	0	+0.2		
	GT R2		-10			Reference			
Receive Gain Tracking	GT R3	1020	-40		-0.2	-0.06	+0.2	dB	
	GT R4		-50		-1.0	-0.10	+1.0		
	GT R5		-55		-1.5	-0.20	+1.5		

 $(V_{DD} = 3.0 \text{ V to } 3.8 \text{ V}, \text{ Ta} = -30^{\circ}\text{C to } +85^{\circ}\text{C})$

*1 Psophometric filter is used

AC Characteristics (Continued)

				(V _{DD}	= 3.0 V to	3.8 V, Ta =	= –30°C to	+85°C)
Parameter	Symbol	Freq. (Hz)	Level (dBm0)	Condition	Min.	Тур.	Max.	Unit
Idle Channel Noise	Nidle T	_	_	AIN = SG *1	_	-70	-68	dBmOp
	Nidle R		_	*1 *2		-76	-74	
Absolute Lovel (Initial Difference)	AV T			V _{DD} = 3.3 V Ta = 25°C	0.338	0.35	0.362	Vrms
Absolute Level (Initial Difference)	AV R			1a = 23 0 *3	0.483	0.50	0.518	VIIIIS
Absolute Level (Deviation of Temperature and Power)	AV Tt	1020	0	V _{DD} = +3 to 3.8 V	-0.2		+0.2	dB
	AV Rt			Ta = -30 to +85°C * 3	-0.2		+0.2	dB
Absolute Delay	Td	1020	0	A to A BCLOCK = 64 kHz	_	_	0.60	ms
	tgd T1	500		*4	—	0.19	0.75	
	tgd T2	600			—	0.11	0.35	
Transmit Group Delay	tgd T3	1000	0		—	0.02	0.125	ms
	tgd T4	2600			—	0.05	0.125	
	tgd T5	2800			—	0.07	-70 -68 -76 -74 0.35 0.362 0.50 0.518 +0.2 +0.2 0.60 0.19 0.75 0.02 0.125 0.05 0.125 0.00 0.75 0.00 0.75 0.00 0.75 0.00 0.75 0.00 0.125 0.00 0.125 0.00 0.125 0.00 0.125 0.00 0.125	
	tgd R1	500		*4	—	0.00	0.75	
	tgd R2	600			—	0.00	0.35	
Receive Group Delay	tgd R3	1000	0		_	0.00	0.125	ms
	tgd R4	2600			_	0.09	0.125	
	tgd R5	2800			_	0.12	0.75	
Crosstalk Attenuation	CR T	1020	0	$\text{TRANS} \rightarrow \text{RECV}$	75	85		dB
UIUSSIAIK ALLEHUALIUH	CR R	1020	U	$\text{RECV} \rightarrow \text{TRANS}$	65	70		UD

*1 Psophometric filter is used

*2 Input "0" code to PCMIN

*3 AVR is defined at VFRO output

*4 Minimum value of the group delay distortion

AC Characteristics (Continued)

$(V_{DD} = 3.0 \text{ V to } 3.8 \text{ V}, \text{ Ta} = -30^{\circ}\text{C}$	C to +85°C)
---	-------------

Parameter	Symbol	Freq. (Hz)	Level (dBm0)	Condition	Min.	Тур.	Max.	Unit
Discrimination	DIS	4.6 kHz to	0	0 to	30	32	_	dB
		72 kHz		4000 Hz				
Out-of-band Spurious	S	300 to	0	4.6 kHz to	—	-37.5	-35	dBmO
		3400		100 kHz				
Intermodulation Distortion	IMD	fa = 470	-4	2fa – fb	_	-52	-35	dBmO
		fb = 320						
D-to-D Mode Gain	_	1020	0	TMC = 1	-1.0	_	+1.0	dB
				PCMIN to				
				PCMOUT				
Power Supply Noise Rejection Ratio	PSR T	0 to	50 m)/	*1		20		٩D
	PSR R	50 kHz	50 mV _{PP}		-	30	_	dB
Digital Output Delay Time	t _{SD}	C _L = 100 pF + 1 LSTTL			50		200	- ns
	t _{XD1}				50		200	
	t _{XD2}				50		200	
	t _{XD3}				50		200	

*1 The measurement under idle channel noise

TIMING DIAGRAM

PCM Data Input/Output Timing

Transmit Timing

Receive Timing

APPLICATION CIRCUIT

FREQUENCY CHARACTERISTICS ADJUSTMENT CIRCUIT

RECOMMENDATIONS FOR ACTUAL DESIGN

- To assure proper electrical characteristics, use bypass capacitors with excellent high frequency characteristics for the power supply and keep them as close as possible to the device pins.
- Connect the AG pin and the DG pin each other as close as possible. Connect to the system ground with low impedance.
- Mount the device directly on the board when mounted on PCBs. Do not use IC sockets. If an IC socket is unavoidable, use the short lead type socket.
- When mounted on a frame, use electro-magnetic shielding, if any electro-magnetic wave source such as power supply transformers surround the device.
- Keep the voltage on the V_{DD} pin not lower than –0.3 V even instantaneously to avoid latchup phenomenon when turning the power on.
- Use a low noise (particularly, low level type of high frequency spike noise or pulse noise) power supply to avoid erroneous operation and the degradation of the characteristics of these devices.

PACKAGE DIMENSIONS

(Unit : mm)

(Unit : mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

(Unit : mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).