OKI Semiconductor

MSM7503

Multi-Function PCM CODEC

GENERAL DESCRIPTION

The MSM7503 is a high performance, low power CODEC LSI device integrating a 2-wire time division transmission (ping-pong transmission) interface function and has a basic function of man-machine interface to that of the MSM7502.

The MSM7503 operates from single 5 V power supply and is ideal for digital telephone terminals such as pushbutton telephone sets and digital PBXs.

The MSM7503 ping-pone transmission interface supports a bidirectional communication of up to 800 m long on the 2-wire twisted pair line, and can send and receive voice data at 64 kbps and control data at 16 kbps.

The man-machine interface consists of analog speech path, key-scanner, tone generators, CODEC meeting the μ/A companding law, and processor interface, which are controlled via 8-bit data buses.

FEATURES

- Single +5 V Power Supply
- Low Power Dissipation Power ON Mode Power Down Mode
- Pin-Pong Transmission
- Transmission data configuration
- : 50 mW Typ. 100 mW Max. : 15 mW Typ. 30 mW Max. : Burst of 8 kHz, Transmission of 256 kbps,

: Controlled by processor

: Controlled by processor

: Controlled by processor, 4 modes

: Controlled by processor, 6 modes

: Controlled by processor, 4 levels

AMI coding, 2-wire time division transmission : Transmit Start bit (1 bit), K-bit (1 bit),

Control bit (2 bits), Voice bit (8 bits),

DC balance bit (1 bit), totalling 13 bits

Receive Sync bit (4 bits), K-bit (1 bit), Control bit (2 bits), Voice bit (8 bits),

DC balance bit (1 bit), totalling 16 bits

- Control Data Interface supports synchronous and asynchronous communications
- Built-in Power-on Reset by the power supply voltage monitoring
- Output of the ping-pong transmission monitoring signal
- CODEC complied by the ITU-T companding law
- Calling Tone Interval
- Calling Tone Combination : Controlled by processor, 6 modes
- Calling Tone Volume
- Ringing Tone Interval
- Ringing Tone Frequency
- Ringing Tone Level
- Built-in PB Tone Generator
- Built-in Speech path Control Switches
- General Latch Output for External Control : 2 bits
- Watch-dog Timer : 500 ms

• Scanning I/O Output

Input

- Direct Connection to Handset
- Built-in Pre-amplifier for Loud-speaker
- Hand-free Interface
- µ-law/A-law Switchable CODEC
- LCD Deflection Angle Voltage
- : Controlled by processor, 8 levels

: 1.2 k Ω driving available

• Package:

80-pin plastic QFP (QFP80-P-1420-0.80-BK) (Product name : MSM7503GS-BK)

: 8 bits

: 8 bits

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

80-Pin Plastic QFP

PIN AND FUNCTIONAL DESCRIPTIONS

LA, LB

General latch outputs for external control.

Statuses of these outputs are controlled via the processor interface. Refer to the description of the control data for details. These outputs provide the capability to drive one TTL.

DG

Digital Ground.

DG is separated from the analog ground AG inside the device. But, DG should be connected as close to the AG pin on PCB as possible.

AG

Analog Ground.

SA0

Sounder (calling tone) driving outputs.

Through processor control, the calling tone volume is selectable from 4 levels and one of six tone combinations is selectable. Initially, the calling tone volume is set at a maximum and the tone combination is set at a 16 Hz Wamble tone by a combination of 1 kHz and 1.3 kHz. The SA0 outputs pulse waveforms using DG as a reference potential.

RMI, RMO0, RMO1

Receive main amplifier input and outputs.

RMI is the inverted input and RMO0 and RMO1 are the outputs of the receive main amplifier. The output signal on RMO1 is inverted against RMO0 by a gain 1 (0 dB), so the earphone of a handset is directly connected between RMO0 and RMO1. During the system power down, the RMO0 and RMO1 outputs are in a high impedance state. The receive main amplifier gain is determined by a resistor connected between RPO and RMI, and a resistor connected between RMI and RMO0. The receive main amplifier gain varies between 0 and +20 dB in effect. A piezo-receiver with an impedance greater than 1.2 k Ω is available.

If the adjusting of receive path frequency characteristics is required, insert the following circuit for adjustment. During the whole system Power ON, the speech path from RMI to RMO0 and RMO1 is disconnected and the output of RMO0 and RMO1 is at the SG level (VA/2). The speech path is provided by processor control.

A circuit example for adjustment of frequency characteristics

SPI

Addition input of speaker amplifier.

The typical gain between SPI and SPO is 0 dB. But, the 2-stage gain amplifier allows to set up a gain between 0 dB and –18 dB in a 6 dB step, or a gain between 0 dB and –28 dB in a 4 dB step through processor control. The input resistance of SPI is typically 20 k Ω to 150 k Ω (it varies by gain setting).

SPO

Output of pre-amplifier for speaker.

Since the driving capability is $2.4 V_{PP}$ for the load of $20 k\Omega$, SPO can not directly drive a speaker. During the whole system power down mode, SPO is at an analog ground level. During the whole system power on mode, SPO is in a non-signal state (SG level), and a receive voice signal, R-tone, F-tone, hold acknowledge tone, PB signal acknowledge tone, and sounder tone are output from the speaker by processor control.

When the speaker is used as a sounder, the sounder tone is output via the SPO pin by connecting the SPI input with the sounder output (SA0 or SA1). In addition, when the AD-converted sounder tone is sent from the main device, the sounder tone is output via the SPO pin since the CAO pin for CODEC output is internally connected.

R1I, R2I, RPO

R1I and R2I are for the inputs and RPO is for the output of the receive pre-amplifier. Normally, R1I is connected via an AC-coupling capacitor to the CODEC analog output (CAO), and R2I is used as the mixing signal input pin.

The typical gain between R1I and PRO is -6 dB. Through processor control, gains are variable from -14 dB to 0 dB in 2 dB steps. In addition, the receive pad can control the gain of -9, -6, -3, or 0 dB. The gain between R2I and RPO is fixed to 0 dB.

During the whole system power-on mode, the RPO output is in non-signal state, and speech signal, R-tone, F-tone, PB acknowledge tone, side tone signal are output by processor control. During the whole system power-down mode, the RPO output is the analog ground level.

The input resistance of R1I is typically between 20 k Ω and 100 k Ω (it varies by gain setting). The input resistance of R2I is typically 20 k Ω .

MLDYI

Hold tone signal input.

For example, the output of external melody IC is connected to this pin. Through processor control, the signal applied to MLDYI is output from the TO output pin as a hold tone on the transmit path, and from the SPO output pin as a hold acknowledge tone on the receive path. The typical gain between MLDYI and TO is –2 dB. Through processor control, a gain between –2 dB and –11 dB is also settable at 3 dB steps. The typical gain between MLDYI and SPO is –3 dB. Through processor control, a gain between –3 dB to –31 dB is also settable at 4 dB steps. MLDYI is a high impedance input, so insert an about 100 k Ω bias resistor between MLDYI and SGT.

TPBI, TO

TPBI is the input and TO is the output of the transmit pre-amplifier (B).

When the handset is used, TPBI is connected to the transmit pre-amplifier (A) output pin (TPAO). If adjustment of frequency characteristics on the transmit path is required, insert a circuit for adjustment of characteristic between TPAO and TPBI. Through processor control, the signal applied to this pin is output via the TO pin on the transmit path and its side tone via the RPO pin. During the whole system power down mode, TO is at an analog ground level. The typical gain between TPBI and TO is +17.7 dB. Through processor control, a gain between +17.7 dB and +8.7 dB is also settable at 3 dB steps.

The typical gain between TPBI and RPO is +3.0 dB. Through processor control, a gain between –9 dB and +9 dB is variable in 3 dB steps. Changing the gain between TPBI and TO may change the gain between TPBI and RPO. TPBI is a high impedance input, so insert an about 100 k Ω resistor between TPBI and SGT.

MPAI, MPAO

Handfree microphone pre-amplifier (A) input and output.

MPAI is the input and MPAO is the output. The speech path between MPAI and MPAO is always active regardless of processor control. During the whole system power saving mode, MPAO is at an analog ground level. The gain between MPAI and MPAO is typically +20 dB. Through processor control, gains between +14 dB and +11 dB are also settable. MPAI is a high impedance input, so insert an about 100 k Ω between MPAI and SGT.

MPBI, MPBO

The handfree microphone (B) input and output.

MPBI is the inverted input and MPBO is the output. With an external resistor, the amplifier gain is adjusted in the range between –25 dB and +25 dB. A signal on the MPBO is output via the TO pin through processor control. During the whole system power down mode, MPBO is at an analog ground level. The gain between MPBO and TO is fixed to 0 dB.

TPAI, TPAO

The transmit pre-amplifier (A) input and output.

TPAI is the input and TPAO is the output. TPAI should be connected to the microphone of handset via an AC-coupling capacitor if the DC offset appears at a transmit signal (offset from SGT). The transmit path from TPAI to TPAO is always active regardless of processor control. During the whole system power down mode, TPAO is at an analog ground level. The gain between TPAI and TPAO is fixed to 20 dB.

SGT

Transmit path signal ground.

SGT outputs half the supply voltage. During the whole power down mode, SGT output is in a high impedance state.

SGC

Bypass capacitor connecting pin for a signal ground level. Insert a 0.1 μF high performance capacitor between SGC and AG.

VA, VD

+5 V power supply.

VA is for an analog circuit and VD is for a digital circuit. Both VA and VD should be connected to the +5 V analog path of the system.

CAI, CAO

CODEC analog input and output.

CAI is the analog input of CODEC to be connected to the TO pin. If the DC offset voltage on the TO signal is great, CAI should be connected via AC-coupling capacitor. At this time, insert an about 100 k Ω bias resistor between CAI and SGT.

CAO is the analog output of CODEC. CAO should be connected to R1I via AC-coupling capacitor.

A bias resistor is not required to R1I. During the whole system or CODEC power down mode, CAO is at the SG voltage level.

PO0, PO1, PO2, PO3, PO4, PO5, PO6, PO7

Scanning outputs.

These output pins need external pull-up resistors because of their open- drain circuits. But, when these are used in combination with PIO to PI7, pull-up resistors are not required. Through processor control, these outputs can be set open or to digital "0". Initially, these outputs are set at an opened state.

PI0, PI1, PI2, PI3, PI4, PI5, PI6, PI7

Scanning inputs. In the READ mode, data on PI0 to PI7 can be read out of the processor via data bus (DB0 to DB7).

Since these inputs are pulled up inside the IC, external resistors are not required.

DB0, DB1, DB2, DB3, DB4, DB5, DB6, DB7

Data bus I/O pins.

These pins are configured as an output during the READ mode only and as an input during other modes.

T1N, T2N

Line transmit signal output.

Signals which consist of a total of 13 bits configured by the start bit (fixed at "1"), the K bit (fixed at "1"), the D bits (control data of two bits), the transmit B bits (eight for voice and data) and the DC bit (1 bit for the DC balance) at the bit rate of 256 kHz are output in burst mode from the T1N pin and the T2N pin in turn at intervals of 125 μ sec. These output signals become the AMI code with a duty of 50% in the line coding configuration by connecting to the line via a transformer etc. In the output timing of the T1N and T2N pins, the top bit of the signal is output after receiving a 16-bit signal.

R1N, R2N

Line receive signal input.

Line signals (50% duty AMI code) which consist of a total of 16 bits configured by the frame synchronous bits (four bits with "1"), the K bit (one bit for polling), the D bits (control data of two bits), the receive B bits (eight bits for voice and data), and the DC bit (bit for DC balance) have been transmitted in burst mode at the bit rate of 256 kHz at interval of 125 µsec. These signals should be input in the R1N pin and the R2N pin after separating then into the polarity of "+" and "-".

SYNC

Synchronous signal (8 kHz) output.

This synchronous signal is generated by dividing the oscillator output of 8.192 MHz, applying the frame synchronous bit included in the line signal as a reference phase. This signal also sent to the tone generator and the CODEC inside the device. All timing signals of the CODEC are synchronized by this signal.

CLK1

64 kHz CLK signal output synchronized to the SYNC signal output.

This signal is connected to the CODEC inside the device and is used as a bit clock for receiving and sending the PCM I/O data from and to the ping-pong transmission interface. When an external signal is input to the BHW pin, or when the FHW pin outputs signals for the external circuit, the timing should be set by the CLK1 signal. This signal is always output in the power ON mode.

CLK2

16 kHz CLK signal output synchronized to the SYNC signal output. This signal can be used for the input or output of the control signal (BD input or FD output) of 16 kbps. This signal is always output in the power ON mode.

CLK3

CLK signal output of 256 kHz synchronized to the SYNC signal.

This signal can be used when the control signal of 16 kHz is input or output from or to the external device by the start-stop synchronization. This signal is always output in the power ON mode.

CLC

Control signal input for phase-inverting the 256 kHz CLK signal which is output form the CLK3 pin.

If the reference phase is set by setting CLC to "0", the CLK signal of 256 kHz is phase-inverted against the reference phase by setting CLC to "1".

FHW

The output of the extracted B-bit (8-bit sequence) from receive signals which are input to R1N and R2N.

This signal is output synchronizing to the rising edge of a CLK1 (64 kHz) output signal beginning with the rising edge of a SYNC output signal.

Since this pin is connected to the D/A converter of the CODEC inside device, the B bits of receive signals are decoded to analog signals.

BHW

Input to the B bit slot of line signals transmitted from the T1N and T2N pins.

The input signal to this pin must be synchronized to the CLK1 output signal (64 kHz) beginning with the rising edge of the SYNC output signal. The input signal is shifted at the falling edge of CLK1.

In the case of inserting the voice data into the transmit B bit, the PCM output of the CODEC is connected to this input pin, and inserting the voice data into the B bit slot is enabled by setting SW12 to ON through processor control. In this case the BHW pin is used as an output pin, so external signals can not be input to this pin. This is an input and output pin of an open drain type with a pulled-up resistance of $5 \text{ k}\Omega$.

FD

The signal output of the extracted Control bit (2-bit sequence at 16 kbps) from line signals which are input to the R1N and R2N pins.

This signal is output synchronizing to the rising edge of a CLK2 output signal beginning with the rising edge of the SYNC output signal.

FD is an output pin of an open drain type with a pulled-up resistance of about 10 k Ω .

FK

The signal output of the extracted K bit (8 kbps) from the line receive signals which are input to the R1N and R2N pins.

This signal is output synchronizing to the rising edge of a SYNC output signal. FK is an output pin of an open drain type with a pulled-up resistance of about 10 k Ω .

BD

Input to the D bit (2-bit sequence at 16 kbps) of line signals transmitted from the T1N and T2N pins. When the BDS control pin is in "0", this pin enters the synchronous mode and data must be input to this pin synchronizing with CLK2 (16 kHz).

When the BDS control pin is set to "1", this pin enters the asynchronous data input mode and the asynchronous data of 11 bits including the start bit and stop bit can be input at data rate of 16 kbps.

BDS

Control signal input for selection of the synchronous mode or asynchronous mode for control data (D-bit) input.

When being at "0" level, this pin enters the synchronous data input mode, when being at "1" level, this pin enters the asynchronous data input mode.

PS

Monitoring signal output for the state of the ping-pong transmission. When frames are synchronized (in normal operation) after receiving more than three consecutive frame synchronous signals which are included in the line receive signal sequence, this pin outputs "1". Otherwise, this pin outputs "0". PS is an output of an open drain type with pulled-up resistance

X1, X2

of about 10 k Ω .

CLK oscillator circuit input and output. X1 is input and X2 is output. A crystal oscillator of 8.192 MHz should be connected between X1 and X2. If the frequency deviation in CLK oscillation is great with respect to the receive data rate, the noise of the CODEC increases. The oscillation frequency deviation in CLK should be kept in ± 20 ppm or less.

XOUT

8.192 MHz CLK signal output.

If capacitance load is given to the output, the current consumption will increase. About 0.03 mA/ pF.

AD0, AD1

Address data inputs for the internal control registers.

Addressing of the internal control registers is executed by AD0 and AD1 and sub address data, DB7 and DB6.

	AD1	AD0	DB7	DB6	Function
			0	0	ON/OFF controls of sounder, R-Tone, F-Tone
			0	1	Level/Frequency controls of sounder, R-Tone
	0	0	1	0	PB tone control
			1	1	Controls of internal speech path switch and general latch Watchdog timer reset
	0		0	0	Controls of receive gain and side tone gain
WDITE		4	0	1	Controls of transmit hold tone, PB tone, handfree input, handset inputs gain
WRITE		1	1	0	Controls of speaker pre-amplifier gain and additional speaker gain
			1	1	Controls of receive PAD and incoming tone input gain
	1	0	Scanning output control		
	1	1	0	0	Scanning interrupt reset
	1	1	0	1	LCD deflection angle control voltage setting
	1	1	1	0	Power ON/OFF control
	1	1	1	1	CODEC control (Controls of companding law and digital loop)
READ	1	0			Scanning data read-out

WRN

Write signal for internal control registers.

Data on the data bus is written into the registers at the rising edge of WRN under the condition of digital "0" of CEN (Chip Enable). While CEN is in digital "1" state, WRN becomes invalid. The Write cycle is a minimum of 2 μ s regardless of the presence or absence of clock signals.

RDN

Read signal input to read PI0 to PI7 out of the processor.

When CEN and RDN are in digital "0" state, the digital values on PI0 to PI7 are output onto the data buses DB0 to DB7. While CEN is in digital "1" state, the RDN signal becomes invalid.

CEN

Chip Enable signal input. When CEN is in digital "0" state, WRN and RDN are valid.

VLCD

By processor control, VLCD outputs a DC voltage between 0 and 1.4 V is about 0.2 V step. This is used to control the deflection angle of the LCD display. VLCD has the internal resistance value of about 1 k Ω , so the external load of over 100 k Ω should be used. During initialized state, VLCD outputs the voltage of 0 V.

LRSTN

Reset signal output for external circuit.

This reset signal output pin goes to "0" level when the power supply is approximately more than 4.0 V or when the TEST pin is at digital "0" level and the watchdog timer (WDT) outputs a signal. The WDT output does not affect the LSRTN output when TEST pin is at digital "1" level.

The LRSTN signal is also used as a reset signal for internal registers.

When LRSTN is at "0" level, all internal control registers are initialized.

The internal WDT outputs a 500 ms cycle signal when the LRSTN is at digital "1" and the processor does not send a timer reset signal.

Refer to the figure 1 for the output timing of this output.

TEST

Control signal input for deciding valid/invalid of reset control from the internal WDT output. When this input pin is at digital "0" level, the LRSTN output goes to "0" level. When this input pin is at "1" level, the internal WDT does not affect the LSRTN output.

CTEST

Test pin for shipment testing. This pin should be set to "0" level.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V _{DD}	AG, $DG = 0 V$	0 to 7	V
Analog Input Voltage	V _{AIN}	AG, DG = 0 V	-0.3 to V _{DD} + 0.3	V
Digital Input Voltage	V _{DIN}	AG, DG = 0 V	–0.3 to V _{DD} + 0.3	V
Storage Temperature	T _{STG}	—	-55 to 150	°C

RECOMMENDED OPERATING CONDITIONS

	Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	
Po	wer Supply Voltage	VD	VA, VD (Voltage must be fixed)	4.75	5.0	5.25	V	
Оре	rating Temperature Range	Та	—	-10	25	70	°C	
Inp	ut High Voltage	V _{IH}	All Digital Input Pins	2.2	—	V _{DD}	V	
Inp	ut Low Voltage	V _{IL}	All Digital Input Pins	0	—	0.8	V	
Dig	ital Input Rise Time	t _{lr}	All Digital Input Pins	—	—	50	ns	
Dig	ital Input Fall Time	ut Fall Time t _{lf} All Digital Input		_	_	50	ns	
		R _{DL}	P00 to P07	10	—	—	kΩ	
Dio	ital Output Load	C	P00 to P07	_	—	100	ьE	
- 3		C _{DL}	Other digital output pins except PO0 to PO7	—	—	10	pF	
or	Oscillating Frequency				8.192	_	MHz	
Oscillator	Allowable Frequency Deviation		25°C ±3°C	-50	_	50	ppm	
Osc	Temperature Characteristics			-50	_	50	ppm	
rystal	Equivalent Series Resistance				_	80	Ω	
5	Production Load Capacitance			_	16		pF	

Recommend Operating Conditions (Analog Interface)

Parameter	Symbol	Cond	Min.	Тур.	Max.	Unit	
		TPAO, MPAO, MPE	20				
Analog Load Desistance	Б	RPO, SPO, CAO		20			kΩ
Analog Load Resistance	R _{AL}	RM00, RM01 with	respected to	0.6			KS2
		SG Level	0.6				
	C _{AL}	TPAO, MPAO, MPE			30	۳E	
Analog Load Capacitance		RPO, SPO, CAO				30	pF
		RM00, RM01	—		70	nF	
		TPAI, TPBI, MPAI		-10		10	
Allowable Analog		MLDY	With respect	-50		50	mV
Input Offset Voltage	V _{off}	R1I, R2I, SPI	to SG	-25		25	
		CAI		-100		100	

Parameter	Symbol	Conditi	on	Min.	Тур.	Max.	Unit
Write Pulse Period	Pw	WRN		2000	_	—	ns
Write Pulse Width	Tw	WRN		100		_	ns
Read Pulse Width	T _R	RDN		200	—	—	ns
Address Data	t _{AW1}	AD0, AD1 \rightarrow WRN		80		—	ns
Setup Time	t _{AR1}	AD0, AD1 \rightarrow RDN		80	—	—	ns
Address Data	t _{AW2}	WRN \rightarrow AD0, AD1		50	—	—	ns
Hold Time	t _{AR2}	$RDN \rightarrow AD0, AD1$	See Fig.2	50	—	—	ns
OFN Cature Times	t _{CW1}	CEN→WRN		80	—	—	ns
CEN Setup Time	t _{CR1}	CEN→RDN		80	—	—	ns
	t _{CW2}	WRN→CEN		50	—	—	ns
CEN Hold Time	t _{CR2}	RDN→CEN		50	—	—	ns
Data Setup Time	t _{DW1}	DB0 to $7 \rightarrow WRN$		110		_	ns
Data Hold Time	t _{DW2}	WRN \rightarrow DB0 to 7		20	—	—	ns

Recommended Operating Conditions (Processor Digital Interface)

Recommended Operating Conditions (Ping-Pong transmission Interface)

Parameter	Symbol	Conditio	on	Min.	Тур.	Max.	Unit
B Signal Set-up Time	T _{SBHW}	BHW Input	See Fig. 3	50	—	—	ns
B Signal Hold Time	T _{HBHW}	BHW Input	See Fig. 3	50	—	—	ns
D Signal Set-up Time	T _{SBD}	BD Input	See Fig. 4	50	—	—	ns
D Signal Hold Time	T _{HBD}	BD Input	See Fig. 4	50	—	—	ns
Receive Data Cycle Time	T _{CB}	R1N, R2N	See Fig. 5	—	3.906	—	μs
Receive Data Width	T _{WB}	Width of "L" at R1N and R2N	See Fig. 5	1.35	1.953	2.5	μs
Receive Flame Cycle Time	T _{FM}	—	See Fig. 5		125	—	μs

ELECTRICAL CHARACTERISTICS

DC and Digital Interface Characteristics

			(V _{DD} = 5	V ±5%, Ta	= -10°C to	o 70°C)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
	I _{DD1}	Operating Mode (No Signal, Sounder OFF)		10	20	mA
Power Supply Current	I _{DD2}	Whole system Power Down	—	3	6	mA
	I _{DD3}	CODEC Power Down	_	7	14	mA
Power Supply Voltage Detection	V _{th}	Power Supply Voltage at LRSTN = 1, See Fig. 1	3.9		—	V
Power Supply Voltage Non-Detection	V _{tl}	Power Supply Voltage at LRSTN = 0, See Fig. 1			3.8	V
Input High Voltage	V _{IH}	—	2.2		V _{DD}	V
Input Low Voltage	VIL	—	0.0	—	0.8	V
High Input Leakage	I	Digital Pins except for PI0 to PI7	—		2.0	μA
Current	IIH	PI0 to PI7 (Internal Pull-up Pins)	—		2.0	μA
Low Input Leakage	1	Digital Pins except for PI0 to PI7	_		0.5	μA
Current	Ι _{ΙL}	PI0 to PI7 (Internal Pull-up Pins)	10	—	25	μA
		Output Pins 1 *1 I _{OH} = 0.1 mA	2.4		V _{DD}	
Digital Output High Voltage	V _{OH}	Output Pins 2 *2 I _{OH} = 1.6 mA	2.4		V _{DD}	V
Vollage		All Output Pins I _{OH} = 1 μA	3.8		V _{PP}	
Digital Output Low Voltage	V _{OL}	I _{0L} = -1.6 mA	0.0		0.4	V
Digital Output Leakage Current	I ₀	DB0 to DB7 (Write Mode)			10	μΑ
Analog Output Offset	V	TPAO, MPAO	-200	—	200	mV
Voltage	V _{off}	MPBO, TO, CAO, RPO, RMOO, RMO1, SPO	-100		100	
Input Capacitance	CIN	—	—	5		pF
Analog Input Desistance	P	TPAI, TPBI, MLDYI, RMI, MPAI, MPBI	—	10		MΩ
Analog Input Resistance	R _{IN}	R1I, R2I, SPI	10	—		kΩ
		CAI (fin : < 4 kHz)	—	1		MΩ
SG Voltage		—	VA/2 -0.05	VA/2	VA/2 +0.05	V
CC Drive Current	I _{SGF}	FORCE Current	1.0	1.5		
SG Drive Current	I _{SGS}	SINK Current	0.3	0.5		mA
Equivalent Pull-up Resistance	R _{PULL}	PI0 to PI7, $V_I = 0 V$	200	370	500	kΩ

Notes: *1 BHW, FK, FD, PS

*2 SYNC, CLK1, CLK2, CLK3, T1N, T2N, XOUT, LA, LB, LRSTN, DB0 TO DB7

Digital Interface Characteristics

 $(V_{DD} = 5 \text{ V} \pm 5\%, \text{ Ta} = -10^{\circ}\text{C to } 70^{\circ}\text{C})$

Devenuetev	Oursels - I	0				v ±J /0, 1a		
Parameter	Symbol		dition		Min.	Тур.	Max.	Unit
Digital Output (Latch) Delay Time	t _{pd LA}	WR→LA, LB See Fig. 2		0.2	—	1.5	μs	
Key Scanning Output Delay Time	t _{pd scn}	WR→P Pull-up resistance	00 to P07 e 10 kΩ	See Fig. 2	0.2	_	1.5	μs
Digital Output (Data) Delay Time	t _{pd data}	RD→DB0~DB7	Se	e Fig. 2	10	20	100	ns
Delay Time of Power	t _{dRST1}	LRSTN $0 \rightarrow 1$	Se	e Fig. 1	—	128	—	ms
Supply Voltage Detect	t _{dRST2}	LRSTN 1 \rightarrow 0		o rig. i	_	0.01	—	μs
	T _{WDT}				_	500	—	ms
Delay Time of LRSTN due to WDT	t _{dRST3}		Se	e Fig. 1		0.85		
	t _{WRST}				—	1.7	—	μs
	t _{dSCK1}	SYNC→CLK1	Se	e Fig. 3	366	—	488	
CLK Output Delay Time	t _{sSCK2}	$SYNC \rightarrow CLK2$	So	See Fig. 4		—	488	ns
	t _{dSCK3}	SYNC→CLK3	36	e riy. 4	366	—	488	
B Signal Delay Time	t _{dFHW}	$CLK1 \rightarrow FHW$	Se	e Fig. 3	—	10		ns
D Signal Output Delay Time	turn		Cas Fig. 4	L→H	_	340	—	ns
	t _{dFD}	CLK2→FD	See Fig. 4	H→L	_	10	—	115
K Signal Output Delay Time	t inte		Coo Fig. 4	L→H		740	—	no
K Signal Output Delay Time	t _{dFK}		See Fig. 4	H→L	—	500	—	ns
SYNC Output Frequency	f _{SYNC}				—	8		kHz
SYNC Output Width	T _{WSYNC}				_	16.6	—	μs
CLK1 Output Frequency	f _{CLK1}				_	64	—	kHz
CLK2 Output Frequency	f _{CLK2}				—	16	_	kHz
CLK3 Output Frequency	f _{CLK3}				—	256	_	kHz
CLK Output Duty Ratio		CLK1, C	LK2, CLK3		_	50		%
Line Output Signal Width	t _{WF}	T1N, T2N "L" Wic	lth Se	e Fig. 5	_	1.953		μs
Clock Output Jitter Width			LK1, CLK2 ien use Xtal		_	250	_	ns

AC Characteristics 1 (CODEC)

 $(V_{DD} = 5 \text{ V} \pm 5\%, \text{ Ta} = -10^{\circ}\text{C to } 70^{\circ}\text{C})$

	1							· · · · ·
Parameter	Symbol	Freq. (Hz)	Level (dBm0)	Condition	Min.	Тур.	Max.	Unit
	Loss T1	60			20	27		
	Loss T2	300			-0.20	0.07	0.20	1
Transmit Frequency	Loss T3	1020				Reference		1
Response	Loss T4	2020	0		-0.15	-0.03	0.20	dB
	Loss T5	3000			-0.15	0.06	0.20	1
	Loss T6	3400			0.0	0.38	0.80	1
	Loss R1	300			-0.15	-0.03	0.20	
Receive Frequency	Loss R2	1020				Reference		1
Response	Loss R3	2020	0		-0.15	-0.02	0.20	dB
nespuise	Loss R4	3000			-0.15	0.15	0.20	1
	Loss R5	3400			0.0	0.56	0.80	1
	SD T1		3		35	43.0	_	
	SD T2		0		35	41.0		1
Transmit Signal to	SD T3	1020	-30	*1	35	38.0	_	dB
Distortion Ratio	SD T4	1020	-40	1	29	31.0	_	
	SD T5		-45		24	26.5	_	-
	SD R1		3		37	43.0		
	SD R2	1020	0		37	41.0	_	dB
Receive Signal to	SD R3		-30	*1	37	40.0		
Distortion Ratio	SD R4		-40	I	30	34.0		
	SD R5		-40		25	34.0		-
	GT T1		3		-0.3	0.01	0.3	
	GT T2		-10		0.0	Reference	0.0	-
Transmit Gain	GT T3	1020	-40		-0.3		0.3	dB
Tracking	GT T4	1020	-40		-0.3	0.05	0.3	UD
3	GT T5		-55		-1.2	0.05	1.2	-
	GT R1		-55			0.30		
			-10		-0.3		0.3	-
Receive Gain	GT R2	1000			0.0	Reference	0.0	
Tracking	GT R3	1020	-40		-0.3	-0.10	0.3	dB
ridolang	GT R4		-50		-0.5	-0.30	0.5	-
	GT R5		-55		-1.2	-0.40	1.2	
	Nidle T			AIN = SG μ	—	-73.5	-70	
Idla Channal Noica				*1 A		-71	-68	
dle Channel Noise	Nidle R	_	—	*1 *2	_	-78.0	-75	dBmOp
	AV T			$CAI \rightarrow BHW$	0.5671	0.6007	0.6363	
Absolute Amplitude	AV R	1020	0	$FHW \rightarrow CAO$	0.5671	0.6007	0.6363	Vrms
Absolute Delay Time	Td	1020	0	$\begin{array}{c} CAI \rightarrow CAO \\ BCLOCK = 64 \ kHz \end{array}$		0.58	0.60	ms

Notes: *1 The Psophometric weighted filter is used

*2 PCMIN input: idle CODE

		1			$(V_{DD} = 5$	V ±5%, Ta	= –10°C to	70°C)
Parameter	Symbol	Freq. (Hz)	Level (dBm0)	Condition	Min.	Тур.	Max.	Unit
	t _{gd} T1	500				0.19	0.75	
	t _{gd} T2	600]		_	0.12	0.35]
Transmit Group Delay	t _{gd} T3	1000	0	*3	—	0.02	0.125	ms
	t _{gd} T4	2600			_	0.05	0.125	
	t _{gd} T5	2800			_	0.08	0.75	1
	t _{gd} R1	500			—	0.0	0.75	
	t _{gd} R2	600	0	*3	—	0.0	0.35	ms
Receive Group Delay	t _{gd} R3	1000			—	0.0	0.125	
	t _{gd} R4	2600			—	0.09	0.125	
	t _{gd} R5	2800			_	0.12	0.75	
Crosstalk Attenuation	CR T	1020	0	$CAI\toCAO$	70	78	—	- dB
	CR R	1020		$\rm FHW \rightarrow BHW$ CAO left open	75	86	—	
Discrimination Out-of-band Signal	DIS	4.6 kHz to 72 kHz	-25	0 to 4000 Hz	30	32.0	_	dB
Out-of-band Signal Spurious	S	300 to 3400	0	4.6 kHz to 100 kHz	_	-37.5	-35	dBmO
Intermodulation Distortion	IMD	fa = 470 fb = 320	1	2fa–fb	_	-52	-35	dBmO
Power Supply Noise	PSR T	0 to 50	50	*4	05	00		40
Rejection Ratio	PSR R	kHz	mV _{pp}	*4	25	30	-	dB

AC Characteristics 1 (CODEC) (Continued)

Notes: *3 The minimum value of group delay only is defined as the reference value *4 Measurement at the idle channel noise

$(V_{DD} = 5 \text{ V} \pm 5\%, \text{ Ta} = -10^{\circ}\text{C to } 70^{\circ}\text{C})$

		1			1		,		/
Parameter	Symbol	Freq. (Hz)	Level (dBV)	Cone	dition	Min.	Тур.	Max.	Unit
Pre-Amp Gain	GTPA			TPAI	-TPAO	18.0	20.0	22.0	dB
Transmit Path Gain	GTPB1	1020	-24.0		II-TO pical gain	15.7	17.7	19.7	dB
Transmit Dath Cain	RG1TPB			Setting,	–3 dB	-5.0	-3.0	-1.0	
Transmit Path Gain Setting (VOL8)	RG2TPB			than	-6 dB	-8.0	-6.0	-4.0	dB
Setting (VOLO)	RG3TPB			typical gain	-9 dB	-11.0	-9.0	-7.0	
Microphone Pre-Amp Gain	GMPA				-MPAO pical gain	18.0	20.0	22.0	dB
Microphone Pre-Amp Gain Setting	RG1MPA	1020	-24.0	Setting,	-6 dB	-8.0	-6.0	-4.0	
(VOL9)	RG2MPA			than typical gain	-9 dB	-11.0	-9.0	-7.0	dB
Additional Transmit Signal Gain	GTMX	1020	-4.0	MPB	0-T0	-2.0	0.0	2.0	dB
Cross Talk Attennation at Microphone Signal Path	TMX OFF	1020	-24	MPA	AI-TO	50	60	—	dB
In-Channel PB Signal Output Level	VPBT1				r wave pical gain	-19.4	-17.4	-15.4	dBV
In-Channel PB Signal	GPBT1			Setting,	–3 dB	-5.0	-3.0	-1.0	
Output Level Setting	GPBT2			than	-6 dB	-8.0	-6.0	-4.0	dB
(VOL4)	GPBT3			typical gain	-9 dB	-11.0	-9.0	-7.0	
In-Channel PB Signal Frequency Deviation	DfPBT	_	_			-1.0	_	1.0	%
In-Channel PB Signal Distortion	THDPBT	_	_	In-band I	Distortion	—	-35	-30	dB
Hold Tone Path Gain	GPAT				YI-TO pical gain	-4.0	-2.0	0.0	dB
Hold Tone Path Gain	RG1PAT	1020	-4.0	Setting,	–3 dB	-5.0	-3.0	-1.0	
Setting	RG2PAT			than	-6 dB	-8.0	-6.0	-4.0	dB
(VOL3)	RG3PAT			typical gain	-9 dB	-11.0	-9.0	-7.0	
Idle Channel Noise	Nitpa			Measur TPAO-TPI connect	ated in 510 Ω ed at TO BI Directly ed Set at gain *5		-70	_	dBV
Maximum Output Voltage Swing	VOT	1020		MPAO), T0, , MPB0 20 kΩ	2.4		_	V _{pp}

Note: *5 Noise band width: 0.3 to 3.4 kHz, non weighted

AC Characteristics 3 (Receive Path)

$(V_{DD} = 5 V \pm 5\%, Ta = -10 \text{ to } 70^{\circ}\text{C})$							

Parameter	Symbol	Freq. (Hz)	Level (dBV)	Cone	dition	Min.	Тур.	Max.	Unit
Receive Signal Path Gain	GRPA				ain is set 1I and RPO	-8.0	-6.0	-4.0	dB
	RGRPA1				-8 dB	-10.0	-8.0	-6.0	
	RGRPA2				-6 dB	-8.0	-6.0	-4.0	
Receive Signal	RGRPA3			Setting,	–4 dB	-6.0	-4.0	-2.0	
Path Gain Setting	RGRPA4	1000	10	than	–2 dB	-4.0	-2.0	0.0	dB
(VOL1)	RGRPA5	1020	-4.0	typical gain	2 dB	0.0	2.0	4.0	
	RGRPA6				4 dB	2.0	4.0	6.0	
	RGRPA7				6 dB	4.0	6.0	8.0	
Receive PAD	RGPAD1			Setting,	–3 dB	-5.0	-3.0	-1.0	
Gain Setting	RGPAD2			than	-6 dB	-8.0	-6.0	-4.0	dB
(VOL10)	RGPAD3			typical gain	-9 dB	-11.0	-9.0	-7.0	
Additional Receive Signal Path Gain	GRMX	1020	-4.0	R2I ar	nd RPO	-2.0	0.0	2.0	dB
Side Tone Path Gain	GSIDE				ain is set BI and RPO	1.0	3.0	5.0	dB
	RGSIDE1				6 dB	4.0	6.0	8.0	
	RGSIDE2			Cotting	3 dB	1.0	3.0	5.0	
Side Tone Path Gain	RGSIDE3	1020	-14.0	Setting, than	–3 dB	-5.0	-3.0	-1.0	
Setting	RGSIDE4				6 dB	-8.0	-6.0	-4.0	dB
(VOL2)	RGSIDE5			typical gain	-9 dB	-11.0	-9.0	-7.0	
	RGSIDE6				-12 dB	-14.0	-12.0	-10.0	
Speaker Pre-Amp Gain	GSP				ain is set PO and SPO	-2.0	0.0	2.0	dB
	RGSP1				-4 dB	-6.0	-4.0	-2.0	
	RGSP2				-8 dB	-10.0	-8.0	-6.0	
Speaker Pre-Amp	RGSP3	1020	-4.0	Setting,	-12 dB	-14.0	-12.0	-10.0	1
Gain Setting	RGSP4			than	-16 dB	-18.0	-16.0	-14.0	dB
(VOL5)	RGSP5			typical gain	–20 dB	-22.0	-20.0	-18.0	
	RGSP6				–24 dB	-26.0	-24.0	-22.0	
	RGSP7				–28 dB	-30.0	-28.0	-26.0	
Additional Speaker Input Path Gain	GSPI	1020	-4.0		ain is set PI and SPO	-2.0	0.0	2.0	dB

AC Characteristics 3 (Receive Path) (Continued)

$(V_{DD} = 5)$	V ±5%,	Ta = -10°	C to 70°C)

Parameter	Symbol	Freq. (Hz)	Level (dBV)	Con	dition	Min.	Тур.	Max.	Unit
Additional Speaker	RGSPI1			Setting,	-6 dB	-8.0	-6.0	-4.0	-
Input Path Gain Setting	RGSPI2	1020	-4.0	than	-12 dB -18 dB	-14.0	-12.0 -18.0	-10.0	dB
(VOL6) Hold Acknowledge Tone Path Gain	RGSPI3 GPAR	1020	-4.0		jain is set DYI and SPO	<u>–20.0</u> –5.0	-3.0	<u>-16.0</u> -1.0	dB
	VPBRP			RPO p	er wave	-32.1	-30.1	-28.1	dBV
PB Acknowledge Tone Output Level	VPBSP				er wave pical gain	-30.2	-28.2	-26.2	dBV
PB Acknowledge Tone Frequency Difference	DfPBR		_	RP0	, SPO	-1.0	_	1.0	%
PB Acknowledge Tone Distortion	THDPBR		_	RPO	, SPO	_	-35	-30	dB
Incoming Tone Speaker Output Path Gain	GCAO				gain is set AO and SPO	-2.0	0.0	2.0	dB
Incoming Tone Speaker	RGCA01	1020	-20	Setting,	-10 dB	-12.0	-10.0	-8.0	
Output Path Gain Setting (VOL11)	RGCA02			than typical gain	–20 dB	-22.0	-20.0	-18.0	dB
	NiRPO	_	_	Measure	:SG, ed at RPO pical gain.	_	-86.0	_	dBV
Idle Channel Noise	NiSPO	_		Measure	:SG, ed at SPO pical gain.		-89.0	_	dBV
	NiRMO			0	G, Gain dB RMOB *5	_	-86.0	_	dBV
Maximum Output Amplitude	VOR				, SP0 20 kΩ	2.4			V _{pp}
Maximum Output Amplitude	VOR	1020		between RM	of 1.2 kΩ OO and RMO1 at each output	3.6		_	V _{pp}
Cross Talk Attennation between Transmit Path and Receive Path	RX to TX	1020	-4	Between I	R1I and TO	4.5	55		dBV

Note: *5 Noise band width : 0.3 kHz to 3.4 kHz, non weighted

AC Characteristics 4 (Ringing Tone)

					$(V_{DD} = 5)$	V ±5%, Ta	= -10°C to	70°C)
Parameter	Symbol	Co	ndition		Min.	Тур.	Max.	Unit
			Level S	etting 1	63	90	117	
R-Tone Output	VDTO	550	Level S	etting 2	84	120	156	
Amplitude (VOL7)	VRTO	RPO	Level S	etting 3	105	150	195	mV _{pp}
			Level S	etting 4	126	180	234	
	VFTRP		RP0		112	160	208	m\/
F-Tone Output Amplitude	VFTSP		SP0		7.5	11.0	14.5	- mV _{pp}
0.T. 0.I. I.			Coin	0 dB	154	220	286	
S-Tone Output	VSTSP	SPO	Gain	-10 dB	49	70	91	mVpp
Amplitude (VOL12)			Setting	–20 dB	12	17	22	
Frequency Deviation	D _{fT}				-0.5		-0.5	%

AC Characteristics 4 (Sounder Output Circuit)

$(V_{DD} = 5 \text{ V} \pm 5\%, \text{ Ta} = -10^{\circ}\text{C to } 70^{\circ}\text{C})$

Parameter	Symbol	Freq. (Hz)	Level (dBV)	Condi	tion	Min.	Тур.	Max.	Unit
	VST1			Reference level	Vol.1	3.5	4		
Sounder Tone Output	VST2			of DG RLSA0	Vol.2	1	1.2	1.5	
Amplitude (VOL13)	VST3			is 40 kΩ or	Vol.3	0.25	0.44	0.6	V
· · · ·	VST4			more.	Vol.4	0.2	0.27	0.35	
Output Resistance	ROSAO			—		—	2	—	kΩ
Output Load	RLSAO		With re	spect to DG		40	_		kΩ

LCD Defelection Angle Control Voltage Output

			(V _{DD} = 5	V ±5%, Ta	= -10°C to	70°C)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
		DB2 DB1 DB0				
		1 1 1	1.1	1.4	1.7	
		1 1 0	0.9	1.2	1.5	
		1 0 1	0.7	1.0	1.3	
Output Voltage	VLCD	1 0 0	0.5	0.8	1.1	V
		0 1 1	0.3	0.8	0.9	
		0 1 0	0.2	0.4	0.6	
		0 0 1	0.15	0.2	0.4	
		0 0 0	0.0	0.0	0.05	
Output Resistance	ROLCD			1.0		kΩ
Output Load	RLLCD	To GND	100	_		kΩ

TIMING DIAGRAM Reset Signal Output Timing

Figure 1

Processor Interface Timing

B-bit signal I/O Timing

Figure 3

D-, K-bit Signal I/O Timing

28/41

FUNCTIONAL DESCRIPTION Control Data Description

Sounder Calling Tone and tone ON/OFF control

WRITE Mode

Address Data AD1 = 0, AD0 = 0

	Control Data							Description for Control						Demerika
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		Description	for Col	ntroi			Remarks
		1				0	0	Sounder output	ON	SW19	ON			Tone Output: SA0
		0				0	0	Sounder output	OFF	SW19	OFF			
		1	0			0	1	Sounder output	ON	SW20	ON			Tone Output: SPO *1
		0	0			0	1	Sounder output	OFF	SW20	OFF			
0	0	1		0	0	1	0	R-Tone	ON	SW13	ON			
0	0	0		U	0	1	0	R-Tone	OFF	SW13	OFF			Tone Output: RPO
		1	•			1	1	F-Tone	ON(1 kHz)	SW14	ON,	SW15	OFF,	
		0	0			1	1	F-Tone	OFF	SW14	OFF,	SW15	OFF,	
		1	4]		1	1	F-Tone	ON(1 kHz)	SW14	OFF,	SW15	ON,	Tone Output: SPO
		0	I			1	1	F-Tone	OFF	SW14	OFF,	SW15	OFF,	

*1: This Sounder Output is sent at the timing shown below.

Level and frequency control of sounder and R-tone

WRITE Mode

		C	Contro	ol Data	a				Dementes		
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description for Control	Remarks		
						0	0	SAO output sounder volume 1 (Large)	Sounder volume and tone		
						0	1	SAO output sounder volume 2 (Middle)	are defind at a time.		
			_			1	0	SA0 output sounder volume 3 (Small 1)	At the initial setting, sounde		
						1	1	SA0 output sounder volume 4 (Small 2)	volume 1 and sounder		
		0	0	0	0			Sounder combination tone 1 (16 Hz wamble tone with 1000 Hz/1333 Hz)	combination tone 1 are set. SAO sounder volume:		
			0	0	1			Sounder combination tone 2 (16 Hz wamble tone with 667 Hz/800 Hz)	VOL 13		
			0	1	0			Sounder combination tone 3 (8 Hz wamble tone with 800 Hz/1000 Hz)			
			1	0	0	_	_	Sounder combination tone 4 (Single tone of 1000 Hz)			
			1	0	1			Sounder combination tone 5 (Single tone of 800 Hz)			
0	1		1	1	0			Sounder combination tone 6 (Single tone of 400 Hz)			
						0	0	R-Tone output level 1 (90 mV _{PP} at RPO output)	R-Tone output level = VOL 7		
						0	1	R-Tone output level 2 (120 mV _{PP} at RPO output)			
				_		1	0	R-Tone output level 3 (150 mV _{PP} at RPO output)	R-Tone output level and		
						1	1	R-Tone output level 4 (180 mVPP at RPO output)	frequency are defined at a time.		
		1	0	0	0			R-Tone 400 Hz single tone	At the initial setting, output		
			0	0	1			R-Tone 425 Hz single tone	level 1 and a single 400 Hz		
			0	1	0			R-Tone 440 Hz single tone	tone are set.		
			0	1	1		_	R-Tone 450 Hz single tone			
			1	0	0			R-Tone 400 Hz ON/OFF by 16 Hz			
			1	0	1			R-Tone 400 Hz ON/OFF by 20 Hz			

PB tone control

WRITE Mode

		C	Contro	ol Data	а			Outp	out PB Fr	equency	Demode
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	PB	Low	High	Remarks
				0	0	0	0	1	697 Hz	1209 Hz	When PBTC = 0
				0	0	0	1	2	697	1336	SW16: ON SW17: ON
				0	0	1	0	3	697	1477	SW18: OFF
				0	0	1	1	Α	697	1633	PB tone is sent to the transmit path T0 and the receive path RP0.
				0	1	0	0	4	770	1209	
				0	1	0	1	5	770	1336	When PBTC = 1
				0	1	1	0	6	770	1477	SW16: OFF SW17: OFF
1	0	1	PBTC	0	1	1	1	В	770	1633	SW18: ON
I	U			1	0	0	0	7	852	1209	PB tone is sent to the receive path SPO only.
				1	0	0	1	8	852	1336	
				1	0	1	0	9	852	1477	
				1	0	1	1	С	852	1633	
				1	1	0	0	*	941	1209	
				1	1	0	1	0	941	1336	
				1	1	1	0	#	941	1477	
				1	1	1	1	D	941	1633	
		0	0	Х	Х	Х	Х	PB t	one stop	SW	16, SW17, SW18: OFF

OKI Semiconductor

SW control and timer reset

WRITE Mode

		C	Contro	ol Data	a				D	- intine (an Oantaal	Dementer
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		Des	cription for Control	Remarks
				0	0	0	1	SW1	ON	Transmit handfree input	When hold tone or PB tone transmit is
				0	0	1	0	SW2	ON	Transmit handset input	selected, these inputs are muted.
				0	0	1	1	SW3	ON	Receive input	—
				0	1	0	1	SW4	ON	Side tone input	When Handfree input is selected, side tone is muted.
				0	1	1	0	SW5	ON	Receive main amplifier input	
				0	1	1	1	SW6	ON	Receive speaker input	
		1	0	1	0	0	0	SW7	ON	Transmit path hold tone input	
1	1			1	0	0	1	SW8	ON	Receive path hold tone Acknowledge input	
				1	0	1	0	SW9	ON	Additional receive input	
				1	0	1	1	SW10	ON	Additional speaker input	
				1	1	0	0	SW11	ON	Speaker DEC input	Speaker DEC input = CODEC AOUT
				1	1	0	1	SW12	ON	PCM output enable	
				1	1	1	0	LA = 1		General Latch output for external c	ontrol
				1	1	1	1	LB = 1			
		0	0		Above	codes		Above o	correspond	ing SW or latch is set to OFF or "0".	
		0	0	0	0	0	0	All of at	bove SWs c	or latches are set to OFF or "0" at the in	nitial setting stage.
1	1	1	1	0	0	0	0	Watchd	log timer is	reset.	

OKI Semiconductor

Gain setting (receive gain, side tone gain)

WRITE Mode

		C	Contro	ol Data	a				– – –
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description for Control	Remarks
					0	0	0	Typical receive gain (–6dB)	Receive gain = VOL1
					0	0	1	–8 dB than the typical gain	Side tone gain = VOL2
					0	1	0	–6 dB than the typical gain	
					0	1	1	–4 dB than the typical gain	Receive gain and side tone gain are set at a time.
		_	_		1	0	0	–2 dB than the typical gain	
					1	0	1	+2 dB than the typical gain	At the initial setting, the typical gain is set.
					1	1	0	+4 dB than the typical gain	
0	0				1	1	1	+6 dB than the typical gain	
		0	0	0				Typical side tone gain (–9 dB)	
		0	0	1				-12 dB than the typical gain	
		0	1	0				–9 dB than the typical gain	
		0	1	1				–6 dB than the typical gain	
		1	0	0		_		–3 dB than the typical gain	
		1	0	1				+3 dB than the typical gain	
		1	1	0				+6 dB than the typical gain	
		1	1	1				Side tone OFF (VOL2 max loss)	

Gain control (transmit hold tone, PB tone, microphone input, handset input)

WRITE Mode

		C	Contro	ol Data	а				Demorke		
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description for Control	Remarks		
						0	0	Typical transmit hold tone gain (-2 dB)	Transmit hold tone gain = VOL3		
						0	1	–3 dB with respect to the typical gain	Transmit PB tone gain = VOL4		
				_	_	1	0	–6 dB with respect to the typical gain	Hold tone gain and PB tone		
			0			1	1	–9 dB with respect to the typical gain	gain are set at a time.		
				0	0			Typical transmit PB tone gain (+4 dB)	At the initial actting, the typical gain is act		
				0	1			–3 dB with respect to the typical gain	At the initial setting, the typical gain is set.		
				1	0	-	_	–6 dB with respect to the typical gain	_		
0	1	0		1	1			–9 dB with respect to the typical gain	_		
0		0				0	0	Typical handfree input gain (+20 dB)	Handfree input gain = VOL9		
						0	1	–6 dB with respect to the typical gain	Handset input gain = VOL8		
				_	_	1	0	–9 dB with respect to the typical gain	Handfree input gain and handset Input		
			1			1	1	_	gain are set at a time.		
				0	0			Typical handset input gain (+12 dB)	At the initial cotting, the typical gain is get		
				0	1			–3 dB with respect to the typical gain	 At the initial setting, the typical gain is set. 		
				1	0		_	-6 dB with respect to the typical gain			
				1	1			–9 dB with respect to the typical gain			

OKI Semiconductor

MSM7503

Gain control (receive PAD, speaker)

WRITE Mode

Control Data									D	
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description for Control	Remarks	
	0	1			0	0	0	Typical speaker pre-amp. gain (0 dB)	Speaker pre-amp. gain = VOL5	
					0	0	1	-4 dB with respect to the typical gain	Additional speaker gain = VOL6	
					0	1	0	-8 dB with respect to the typical gain	Speaker pre-amp. gain and additional	
					0	1	1	-12 dB with respect to the typical gain	speaker gain are set at a time.	
					1	0	0	-16 dB with respect to the typical gain	At the initial setting, SW21-OFF and the	
					1	0	1	-20 dB with respect to the typical gain		
1					1	1	0	-24 dB with respect to the typical gain		
					1	1	1	-28 dB with respect to the typical gain		
			0	0				Typical additional speaker input path gain (0 dB)		
		-	0	1				-6 dB with respect to the typical gain		
			1	0		_		-12 dB with respect to the typical gain		
			1	1				-18 dB with respect to the typical gain		
		0	0	0	0	0	0	Speaker receive OFF(SW21 OFF)		
							1	Speaker receive ON (SW21 ON)		
1	1	0				0	0	Typical receive PAD gain (0 dB)	Receive PAD = VOL10	
				0	_	0	1	-3 dB with respect to the typical gain	Incoming tone gain = VOL11, VOL12	
			_		_	_	1	0	-6 dB with respect to the typical gain	Receive PAD and incoming tone gain are
			0			1	1	-9 dB with respect to the typical gain	set at a time.	
				0	0		Typical incoming tone gain (0 dB)	At the initial setting, the typical gain is set.		
				0	1	-	_	-10 dB with respect to the typical gain	At the miliar setting, the typicar gain is set.	
				1	0			-20 dB with respect to the typical gain		

Key scanning signal output control

WRITE Mode

Address Data AD1 = 1, AD0 = 0

Controlo Data								Description (on Osubal	
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0							DB0	Description for Control	
			Outpu	t Data				The data set on DB7 to DB0 are output on PO7 to PO0 respectively. Output data is held until next data is written. When the set data is set to "0", output data goes to "0", when set to "1", output pin is left open. At the initial setting, PO7 to PO0 are in open state.	

Key scanning data read out

Read Mode Address Data AD1 = 1, AD0 = 0

		С	ontor	ol Dat	ta			Description for Control
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Data input onto PI7 to PI0 are output onto DB7 to DB0.
PI7	PI6	PI5	PI4	PI3	PI2	PI1	PI0	

Special functions

WRITE Mode

Address Data AD1 = 1, AD0 = 1

		С	ontor	ol Dat	ta			Description for Osytual	Demerika	
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description for Control	Remarks	
LCD	Defle	ction	Angle	Cont	rol Vo	Itage	Outpu	ıt		
0	1	0	0	0	0	0	0	VLCD pin output voltage: 0.0 V		
					0	0	1	: 0.20 V		
					0	1	0	: 0.40 V		
					0	1	1	: 0.60 V	At the initial catting stage	
0					1	0	0	: 0.8 V	At the initial setting stage, set to 0 V.	
					1	0	1	: 1.0 V		
					1	1	0	: 1.2 V		
					1	1	1	: 1.4 V		
Pow	er Dov	wn Mc	de Co	ontrol					·	
		0	0	0	0	0	0	Analog, CODEC power down mode	At the initial setting stage, set to	
	0					0	1	Analog, CODEC power ON mode	analog and CODEC power down mode. CODEC power ON/OFF	
I						1	0	CODEC power down mode	control is valid in the analog and	
						1	1	CODEC power ON mode	CODEC power ON mode.	
COD	EC Co	ontrol								
1	1	0	0	0			0	CODEC operates in µ-law	At the initial setting stage, set to μ-law, and FHW and BHW	
						_	1	CODEC operates in A-law	are normally connected.	
					0	0		FHW and BHW are normally connected	The componding law and the	
						1	_	BHW is connected to FHW	connection control are set at a time.	

*2: Even during the analog and CODEC power down mode, following functions are available, Key scanning data I/O, sounder outputs (SAO), WDT, and general latch output (LA, LB)

APPLICATION CIRCUIT

MSM7503 Speech Path Level Setting

OKI Semiconductor

Note : \rightarrow : The output signal is input with the same phase as

> : The output signal is with inverted phase.

39/41

MSM7503

RECOMMENDATIONS FOR ACTUAL DESIGN

- To assure proper electrical characteristics, use by pass capacitors with excellent high frequency characteristics for the power supply and keep them as close as possible to the VA and AG pins.
- Connect the AG pin and the DG pin each other as close as possible. Connected to the system ground with low impedance. If the AG and DG of the device are connected to different ground lines, the device may be latched up.
- Connect the VA pin and the VD pin as close together as possible and routed them to the analog 5 V power supply. If the VA and VD of the device are connected to different power supplies, the device may be latched up.
- Mount the device directly on the board when mounted on PCBs. Do not use IC sockets. If an IC socket is unavoidable, the short lead type socket is recommended.
- When mounted on a frame, electro-magnetic shielding should be recommended, if any electromagnetic wave source such as power supply transformers is surrounding the device.
- Keep the voltage on the V_{DD} pin not lower than –0.3 V even instantaneously to avoid latch-up phenomenon when turning the power on.
- Use a low noise (particularly, low level type of high frequency spike noise or pulse noise) power supply should be used to avoid the erroneous operation and the degradation of the characteristics of these devices.
- Connect analog input pins and digital input pins that are not used to the SG pin and to GND, respectively.
- When the data is written differently from the data defined in the section, Control Data Description in Functional Description, the device is not guaranteed in normal operation.

PACKAGE DIMENSIONS

(Unit : mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).