MSM64431

Built-in 8-Bit A/D Converter 4-Bit Microcontroller

GENERAL DESCRIPTION

The MSM64431 is a high-performance 4-bit microcontroller that incorporates OKI's nX-4/20 CPU core.

The MSM64431 has a minimum instruction execution time of 714 ns (@4.2 MHz) and contains a 1024-byte program memory, a 64-nibble data memory, four I/O ports (16 bits in total), an 8-bit 4-channel A/D converter, and a time base counter.

Applications include various types of controllers, remote-controllers, home appliances such as fans, and toys.

FEATURES

 Operating range 	
Operating frequency	: 500 kHz to 4.2 MHz
Operating voltage	: 4.5 to 5.5 V
Operating temperature	: -40 to +85°C
 Internal program memory 	: 1024 bytes
 Internal data memory 	: 64 nibbles
 Minimum instruction execution time 	: 714 ns @ 4.2 MHz
• A/D converter	: 8-bit; 4 channels
• I/O port	
Input-output port	: 1 port × 4 bits
Input port	: 2 ports \times 4 bits
Output port	: 1 port \times 4 bits
 External interrupt 	:1
 Interrupt sources 	:4
 Package options: 	
24-pin plastic DIP (DIP24-P-600-2.54)	
24-pin plastic SOP (SOP24-P-430-1.27-K)	: (Product name : MSM64431-xxxGS-K) xxx indicates the code number.

BLOCK DIAGRAM

PIIN CONFIGURATION (TOP VIEW)

PIN DESCRIPTIONS

Function	Symbol	Туре	Description
	V _{DD}	—	+5 V digital power supply
GND —		—	0 V digital ground
Power supply	AV_{DD}	—	+5 V analog power supply
	AGND	_	0 V analog ground
Oscillation	OSC0	I	Oscillation input/external clock input
OSCIIIALION	OSC1	0	Oscillation output
Control	RESET	I	System reset (starts from address 0)
Control	TEST	I	Test only input
	PORT 0	I	4-bit input port. P0.0's secondary function is an external interrupt input.
Ports	PORT 1	I/O	4-bit input-output port
	PORT 2	0	4-bit output port
	PORT 3	I	4-bit input port. This port becomes an analog input channel at A/D conversion when set to perform its secondary function.

MEMORY MAPS

Program Memory

Program Memory Map

Address 000H is the instruction execution start address after system reset.

The CZP area from address 010H to address 01FH is the start address area for the CZP subroutine of one-byte call instruction.

The interrupt address from address 020H to 03DH is assigned the start address of interrupt subroutines.

Data Memory

Data memory is composed of eight banks with 256 nibbles (256 x 4 bits) in each bank. In data RAM, BANK 7 is assigned 64 nibbles and BANK 0 is assigned to Special Function Registers.

Data memory map

The stack area is memory that starts at address 7FFH and extends downwards. Four nibbles are used by subroutine call instructions and eight nibbles are used when interrupts are generated.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	$V_{DD} = AV_{DD}$		–0.3 to 7.0	
Input voltage	VI	Ta = 25°C	-0.3 to V _{DD} +0.3	
Output voltage	V ₀	GND = AGND = 0 V	-0.3 to V _{DD} +0.3	
Analog input voltage	V _{AI}		-0.3 to V _{DD} +0.3	
Storage temperature	T _{STG}	—	-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Range	Unit
Power supply voltage	$V_{DD} = AV_{DD}$	f = 500 kHz to 4.2 MHz	4.5 to 5.5	V
Operating temperature	T _{op}	_	-40 to +85	°C

ELECTRICAL CHARACTERISTICS

DC Characteristics

Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit
"H" input voltage	*1	VIH1	_	0.5 V _{DD}		V _{DD}	V
"H" input voltage	*2	V _{IH2}	_	0.7 V _{DD}		V _{DD}	V
"L" input voltage	*3	V _{IL}	—	0	_	0.2 V _{DD}	V
"H" output current	*4	I _{OH}	$V_{OH} = V_{DD} - 1.0 V$	1.0	_		mA
"L" output current	*4	I _{OL1}	$V_{0L1} = 0.4 V$	-1.6	_	_	mA
"L" output current	*5	I _{OL2}	V _{0L2} = 1.2 V	-10		—	mA
input leakage current	*6	ILI	$V_I = V_{DD}/0 V$	_		±5	μA
Output leakage current	*5	I _{L0}	$V_I = V_{DD}/0 V$	_		±5	μA
Pull-up resistance	*7	R _{PU}	—	20	40	80	kΩ
Pull-down resistance	*8	R _{PD}	—	2	5	15	kΩ
Analog reference power sup	ply	I _{REF}	$V_{DD} = AV_{DD} = 5 V$		0.5	2.0	mA
current	*3		GND = AGND = 0 V		0.5	2.0	IIIA
Operating current concump	Operating current consumption		$V_{DD} = AV_{DD} = 5 V$			3	mA
			f=4.2 MHz (no load)				
Current consumption at HALT *9		lasu	$V_{DD} = AV_{DD} = 5 V$	—	_	300	μA
		Iddh	f=4.2 MHz (no load)				
Stand by ourrant	*9	I _{DDS}	$V_{DD} = AV_{DD} = 2 V$	_	_	2	μΑ
Stand-by current	9		Ta = 25°C				

(V_DD = AV_DD = 5 V \pm 10%, GND = AGND = 0 V, Ta = -40 to +85°C)

*1 Except OSC0, TEST and RESET

*2 OSC0, TEST and $\overline{\text{RESET}}$

*3 All input pins

*4 P1, P2

*5 P2

*6 P0, P1, P3

*7 RESET, P0, P3

*8 TEST

*9 I_{REF} subtracted

A/D Converter Characteristics

(1) When f = 1 MHz

		$(V_{DD} = AV_{DD} = 5)$	V ± 10%,	GND = AGNE	0 = 0 V, Ta =	–40 to 85°C)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Resolution	n	Refer to the		_	8	bit
Linearity error	EL	recommended circuit (Figure 1). Analog input	—	_	+1 -1	LSB
Differential linearity error	ED	source impedance RI \leq 5 k Ω		_	±0.5	LSB
Crosstalk	E _{CT}	Refer to the measuring circuit (Figure 2).		_	±0.5	LSB
Conversion time	t _{CONV}	f _{OSC} =1 MHz	_	60	_	μs/CH

(2) When f = 4.2 MHz

 $(V_{DD} = AV_{DD} = 5 V \pm 10\%, GND = AGND = 0 V, Ta = -40 to 85°C)$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Resolution	n	Refer to the		—	8	bit
Linearity error	EL	recommended circuit (Figure 1). Analog input	_	_	+1.5 -1.5	LSB
Differential linearity error	ED	source impedance $RI \leq 5 k\Omega$	_		±0.5	LSB
Crosstalk	E _{CT}	Refer to the measuring circuit (Figure 2).	_		±0.5	LSB
Conversion time	t _{CONV}	f _{OSC} =4.2 MHz	_	14	—	μs/CH

Definition of Terms

Resolution Capacity	This refers to the minimum input analog value that is distinguishable. For 8 bits, $2^8=256$ (AV _{DD} $\prod 256$) can be resolved.
Linearity Error	This refers to the variance between the ideal characteristics of an 8-bit A/D converter and the actual conversion characteristics when no quantitized error is involved. Ideal conversion characteristics refer to steps that divide the voltage between AV_{DD} and AGND into 256.
Differential	
Linearity Error	This refers to the smoothness of the conversion characteristics. The width of analog input voltage corresponding to the variation of digital output for 1 bit is ideally $1LSB=AV_{DD} \prod 256$. The difference between this ideal bit size and a bit size at an arbitrary point in the conversion range is called differential linearity error.

RI (Analog input source impedance) $\leq 5~k\Omega$

Analog input. The difference in the A/D conversion results between the identical analog input applied to AI 0-3 and the result by the left figure is taken to be caused by crosstalk.

Figure 2. Crosstalk measuring circuit

(Unit : mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

(Unit : mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).