OKI Semiconductor

MSM548512L

524,288-Word × 8-Bit High-Speed PSRAM

DESCRIPTION

The MSM548512L is fabricated using OKI's CMOS silicon gate process technology. This process, coupled with single-transister memory storage cells, permits maximum circuit density, minimum chip size and high speed.

MSM548512L has Self-refresh mode in addition to Address-refresh mode and Auto-refresh mode. In the Self-refresh mode the internal refresh timer and address counter refresh the dynamic memory cells automatically. This series allows low power consumption when using standby mode with Self-refresh.

The MSM548512L also features a static RAM-like write function that writes the data into the memory cell at the rising edge of \overline{WE} .

FEATURES

- Large capacity
- Fast access time
- Low power
- Refresh free
- Logic compatible
- Single power supply
- Refresh
- Package compatible
- Package options: 32-pin 600 mil plastic DIP 32-pin 525 mil plastic SOP

- 4-Mbit (524,288-word × 8 bits)
- : 80 ns max.

:

:

- 200 μA max. (standby with Self-refresh)
- Self refresh
- SRAM WE pin, no address multiplex
- 5 V ±10%
- 2048 cycle/32 ms auto-address refresh
- : SRAM standard package

(DIP32-P-600-2.54) (Product : MSM548512L-xxRS) (SOP32-P-525-1.27-K) (Product : MSM548512L-xxGS-K) xx indicates speed rank.

PRODUCT FAMILY

Family	Access Time (Max.)	Package
MSM548512L-80RS	80 ns	
MSM548512L-10RS	80 ns 100 ns 120 ns 80 ns 100 ns	600 mil 32-pin Plastic DIP
MSM548512L-12RS	120 ns	
MSM548512L-80GS-K	80 ns	
MSM548512L-10GS-K	100 ns	525 mil 32-pin Plastic SOP
MSM548512L-12GS-K	120 ns	

PIN CONFIGURATION (TOP VIEW)

32-Pin Plastic DIP

32-Pin Plastic SOP

Function
Address Input
Data Input/Output
Chip Enable Input
Output Enable / Refresh Input
Write Enable Input
Power Voltage (5 V)
Ground (0 V)

BLOCK DIAGRAM

FUNCTION TABLE

CE	OE/RFSH	WE	I/O Pin	Mode
L	L	Н	Low-Z	Read
L	Х	L	High-Z	Write
L	Н	Н	High-Z	
Н	L	Х	High-Z	Refresh
Н	Н	Х	High-Z	Standby

L : Low Level Input

H : High Level Input

X : Don't Care

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Voltage on Any Pin from V_{SS} *1	V _T	-1.0 to 7.0	V
Power Dissipation	PD	1.0	W
Operating Temperature	T _{opr}	0 to 70	°C
Storage Temperature	T _{stg}	–55 to 125	0°
Storage Temperature (biased)	T _{bias}	-10 to 85	°C
Short Circuit Output Current	I _{OS}	50	mA

*1 To V_{SS}

Note: 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

(Ta =	0°C to	70°C)
-------	--------	-------

Parameter	Symbol	Min.	Тур.	Max.	Unit
Develop Querra ha Maltha na	V _{CC}	4.5	5.0	5.5	V
Power Supply Voltage	V _{SS}	0	0	0	V
Input Voltage	V _{IH}	2.4		6.0	V
	VIL	-0.5	_	0.8	V

DC Characteristics

(V _{CC} = 5 V ±10%	, $V_{SS} = 0 V$, $Ta = 0^{\circ}C$ to $70^{\circ}C$)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Operating Current	I _{CC1}	—	50	75	mA	$I_{I/O} = Open, t_{Cyc} = min.$
Ober allow Occurrent	I _{SB1}		1	2	mA	$\label{eq:cell} \overline{\text{CE}} = \text{V}_{\text{IH}}, \ \overline{\text{OE}}/\overline{\text{RFSH}} = \text{V}_{\text{IH}}, \\ \text{V}_{\text{IN}} \geq 0 \ \text{V}$
Standby Current	I _{SB2}		100	200	μΑ	$\label{eq:cell} \begin{split} \overline{CE} \geq V_{CC} - 0.2 \ V, \ V_{IN} \geq 0 \ V, \\ \overline{OE}/\overline{RFSH} \geq V_{CC} - 0.2 \ V \end{split}$
	I _{CC2}		1	2	mA	$\label{eq:cell} \overline{CE} = V_{IH}, \ \overline{OE}/\overline{RFSH} = V_{IL}, \\ V_{IN} \geq 0 \ V$
Self Refresh Current	I _{CC3}		100	200	μA	$\label{eq:cell} \begin{split} \overline{CE} \geq V_{CC} - 0.2 \ V, \ V_{IN} \geq 0 \ V, \\ \overline{OE}/RFSH \leq 0.2 \ V \end{split}$
Input Leakage Current	ILI	-10	—	10	μA	V_{CC} = 5.5 V, V_{IN} = V_{SS} to V_{CC}
Output Leakage Current	ILO	-10	—	10	μA	$\overline{OE}/\overline{RFSH} = V_{IH}, V_{I/O} = V_{SS}$ to V_{CC}
Output Low Level	V _{OL}	_	_	0.4	V	I _{0L} = 2.1 mA
Output High Level	V _{OH}	2.4	_	—	V	$I_{OH} = -1 \text{ mA}$

Capacitance

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Capacitance	C _{IN}	V _{IN} = 0 V	_	—	8	pF
I/O Pin Capacitance	CI/O	V _{I/0} = 0 V			10	pF

Note: This parameter is periodically sampled and is not 100% tested.

AC Characteristics

Measurement condition:

Input pulse level	$V_{IH} = 2.4 V, V_{IL} = 0.4 V$
Output reference level	$V_{OH} = 2.0 V, V_{OL} = 0.8 V$
Rising and falling time	5 ns
Output load	1 TTL + 100 pF
Input timing reference level	High = 2.2 V , Low = 0.8 V

 $(V_{CC} = 5 \text{ V} \pm 10\%, \text{ Ta} = 0^{\circ}\text{C to } 70^{\circ}\text{C})$

Parameter	Symbol		48512L 30		48512L 10		48512L 12	Unit	Note
		Min.	Max.	Min.	Max.	Min.	Max.		
Random Read Write Cycle Time	t _{RC}	160	_	180	_	210	_	ns	
Random Read Modify Write Cycle Time	t _{RWC}	220	_	240		280		ns	
CE Access Time	t _{CEA}	—	80	_	100	_	120	ns	
OE Access Time	t _{OEA}	_	30	—	30	—	50	ns	
Chip Disable to Output in High-Z	t _{CHZ}	_	25		30	_	30	ns	6
CE to Output in Low-Z	t _{CLZ}	20	—	20		20		ns	
OE Disable to Output in High-Z	t _{OHZ}	_	25	—	25	—	30	ns	6
OE Output in Low-Z	t _{OLZ}	0	_	0		0		ns	
CE Pulse Width	t _{CE}	80n	10µ	100n	10µ	120n	10µ	S	
CE Precharge Time	t _P	70	_	70	_	80	_	ns	
Address Set-up Time	t _{AS}	0	_	0	_	0	_	ns	
Address Hold Time	t _{AH}	20	_	25		30	_	ns	
Read Command Set-up Time	t _{RCS}	0	_	0	_	0	_	ns	
Read Command Hold Time	t _{RCH}	0	_	0		0	_	ns	
OE Command Hold Time	t _{OHC}	15	_	15	_	15	-	ns	
OE Delay Time	t _{OCD}	0	_	0		0	_	ns	
Write Command Pulse Width	t _{WP}	25	_	30	_	35	_	ns	
Chip Enable Time	t _{CW}	80	_	100	_	120	_	ns	
Input Data Set Time	t _{DW}	20	_	25	_	30	_	ns	
Input Data Hold Time	t _{DH}	0	_	0	_	0	_	ns	
Output Active from End of Write	tow	5	_	5	_	5	_	ns	
Write Enable to Output in High-Z	t _{WHZ}		20		25	_	30	ns	6
Transition Time	tŢ	3	50	3	50	3	50	ns	11
RFSH Delay Time from CE	t _{RFD}	70	_	70	_	80	_	ns	
RFSH Precharge Time	t _{FP}	40	_	40	_	40	_	ns	
RFSH Pulse Width (Auto-refresh)	t _{FAP}	80n	8μ	80n	8μ	80n	8μ	S	
Auto-refresh Cycle Time	t _{FC}	160	_	180	_	210	_	ns	
RFSH Pulse Width (Self-refresh)	t _{FAS}	8	_	8	_	8	_	μs	
CE Delay Time from RFSH in Self-refresh Mode	t _{RFS}	600	_	600	_	600	_	ns	
Refresh Period (2048 cycle/32 ms)	t _{REF}	_	32	_	32	_	32	ms	

- Notes: 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
 - 2. All voltages are referenced to ground.
 - 3. I_{CC1} depends on output loading. Specified values are obtained with the output open.
 - 4. An initial pause of $100 \ \mu s$ is required after power-up followed by more than 8 initial cycles before proper device operation is achieved.
 - 5. AC measurements assume $t_T = 5$ ns.
 - 6. t_{CHZ}, t_{WHZ} and t_{OHZ} define the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
 - 7. In write cycles, the input data is latched at the earlier rising point of either \overline{CE} or \overline{WE} . Write operation is achieved when both \overline{CE} and \overline{WE} are low.
 - 8. The I/O state remains at high impedance after \overline{CE} goes low if the transition occurs at the same time as or after the falling edge of \overline{WE} .
 - 9. Use WE or OE or both signals to disable the output before input data is applied during a write cycle when the input is not the same.
 - 10. Data input must be set to floating state before I/O becomes low impedance by $\overline{\text{WE}}$ or $\overline{\text{OE}}$ or both.
 - 11. V_{IH} (Min.) and V_{IL} (Max.) are input timing reference levels for measurement. The transition time is measured between V_{IL} and V_{IH}.
 - 12. 2048-cycle refresh must be applied within 15 μ s after the end of self refreshing to satisfy 2048 cycles/32 ms.

TIMING WAVEFORM

Read Cycle

Write Cycle 1 (OE High)

Write Cycle 2 (OE Low)

Read Modify Write

Auto Refresh Cycle

Self Refresh Cycle

PACKAGE DIMENSIONS

(Unit : mm)

(Unit : mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).