# **TCS208F Thermal Conductivity Sensor**



- Thermal conductivity sensor for gases
- Silicon micromechanics
- Very small dimensions
- Short time constants
- Measurement of very small gas volumes
- Gas exchange by diffusion

#### DESCRIPTION

The sensor element consists of a silicon chip with a thin membrane approximately  $1mm^2$  in size of a material with extremely good electrical and thermal insulating properties. On the membrane are two thin film resistors ( $R_{m1}$ ,  $R_{m2}$ ) which are both used for heating the membrane and for measurement of membrane temperature Tm. The resistors are passivated to protect them from the effects of the gas. The membrane is completely covered by a second small silicon chip with a rectangular cavity etched in. The hollow space thus formed above the membrane is the thermal conductivity section. The gas comes to the measuring section through a small lateral opening in the membrane cover by diffusion only, and not by flow.

The sensor chip and its cover are attached to a silicon support which also permits gas exchange to the lower side of the membrane. The sensor is electrically connected to an eight pin base by gold wire bonding.

Due to the thermal conductivity I of the gas surrounding the membrane, thermal energy is dissipated from the membrane held at higher temperature Tm. Measured is the signal needed in a temperature stabilization circuit to keep the excess temperature of the membrane DT constant.

On the solid part of the chip are two more resistors ( $R_{t1}$ ,  $R_{t2}$ ) to measure and compensate for the effect of the ambient temperature  $\vartheta$ .

#### **FEATURES**

### **APPLICATIONS**

- Measuring hydrogen content thermal conductivity
- Analyzing binary gas by evaluating
- Determination of CO2 vs. Methane
- Discrimination of natural gas
- Measurement of Helium or Xenon contents
- Industrial application
- Monitoring of gas characteristic
- Determining gas concentration
- Landfill or digestor gas
- Different origin gas or compositions gas

# **TCS208F Thermal Conductivity Sensor**

### **ABSOLUTE MAXIMUM RATINGS**

| Description                                          | min. | typ. | max. | Unit |
|------------------------------------------------------|------|------|------|------|
| Heating power P (R <sub>m1</sub> + R <sub>m2</sub> ) |      |      | 30   | mW   |
| Membrane temperature T <sub>m</sub>                  |      |      | 180  | °C   |
| Ambient temperature 9                                | -20  |      | +85  | °C   |
| Gas pressure on base <sup>1</sup>                    |      |      |      |      |

### **SPECIFICATION**

| Description                                                                                         | min.  | typ.  | max.  | Unit            |
|-----------------------------------------------------------------------------------------------------|-------|-------|-------|-----------------|
| Resistances R <sub>m1</sub> , R <sub>m2</sub> (T <sub>amb</sub> @ 25°C)                             | 92    | 100   | 115   | Ω               |
| Resistances R <sub>t1</sub> , R <sub>t2</sub> (T <sub>amb</sub> @ 25°C)                             | 220   | 240   | 275   | Ω               |
| Quotient $R_{tx} / (R_{m1} + R_{m2})   x \epsilon \{1,2\}$                                          | 1.13  | 1.2   | 1.27  |                 |
| Resistance difference R <sub>m1</sub> - R <sub>m2</sub>                                             | -2.00 |       | +2.00 | Ω               |
| Temperature coefficient (R <sub>m</sub> , R <sub>t</sub> )   20°C – 100°C ( $\alpha$ ) <sup>2</sup> | 4800  | 5500  | 5900  | ppm/K           |
| Geometry factor (G) <sup>3</sup>                                                                    |       | 3.6   |       | mm              |
| Membrane thermal time constant $(\tau_m)$                                                           |       | < 5   |       | ms              |
| Time constant for gas exchange ( $\tau_{diffusion}$ )                                               |       | <100  |       | ms              |
| Drift (Rxy)   x ε {m,t} ; y ε {1,2}                                                                 |       | 0.001 | 0.01  | %/week          |
| Volume of diffusion chamber structure                                                               |       | 0.2   |       | mm <sup>3</sup> |
| Surrounding volume to be kept clear (see Fig.5)                                                     |       | 100   |       | mm³             |

Base material:

Silicon, microstructured by anisotropic etching

| Dimensions of sensor: | excluding base | approx. 3.5mm × 3.5mm × 1.2mm |
|-----------------------|----------------|-------------------------------|
| (see Fig.1)           | including base | approx. 13mm Ø × 15.4mm       |

Material of parts exposed to gas: Si, SiNx, gold, epoxy

Mechanical stress tests have been performed on prototype sample devices for:

| Vibration: | in accordance with IEC 68-2-6 Appendix B (1982) 10 cycles;            |
|------------|-----------------------------------------------------------------------|
|            | ±1.5mm; 20g; 102000Hz; 1octave/min                                    |
| Shock:     | in accordance with IEC 68-2-27 Amendment #1 (Oct.82) 10               |
|            | shocks each radial and axial; 100g; 7.5ms / 300g; 2.5ms / 900g; 1.2ms |

## **RECOMMENDED OPERATING CONDITIONS**

| Description                                              | min. | typ. | max. | Unit |
|----------------------------------------------------------|------|------|------|------|
| Heating power P ( $R_{m1} + R_{m2}$ )                    |      |      | 5    | mW   |
| Membrane excess temperature $\Delta T = T_m - \vartheta$ | (30) | 50   | 70   | °C   |

The minimum  $\Delta T$  for any application is determined by the resolution of thermal conductivity  $\lambda$  required in combination with the noise of the amplifier circuit used. A very low  $\Delta T$  has advantages in terms of linearity, low drift and better long-term stability of the sensor.

<sup>&</sup>lt;sup>1</sup> Pressure data according to supplier specifications for properly supported device

 $<sup>^2</sup>$  min. value of  $\alpha$  quoted only for applications to be compatible with a potential second source of lower specs. Product is constantly being improved to get closer to DIN 43760 specifications.

<sup>&</sup>lt;sup>3</sup> The factor G is determined by the internal sensor geometry.

SUNSTAR自动化 http://www.sensor-ic.com/ TEL: 0755-83376489 FAX:0755-83376182 E-MAIL:szss20@163.com Model Number TCS208F Rev 1.0 23 May 2008

## **TCS208F Thermal Conductivity Sensor**

#### **MECHANICAL DIMENSIONS**

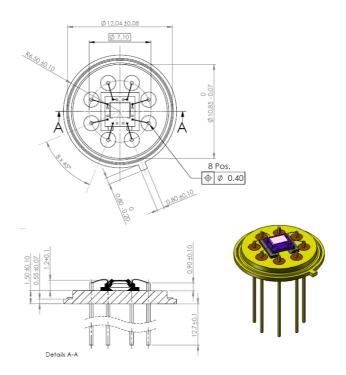



Fig. 1 Dimensions

All dimensions in mm

The information in this sheet has been carefully reviewed and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of such devices any license under the patent rights to the manufacturer. Measurement Specialties, Inc. reserves the right to make changes without further notice to any product herein. Measurement Specialties, Inc. makes no warranty, representation or guarantee regarding the suitability of its product for any particular purpose, nor does Measurement Specialties, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters can and do vary in different applications. All operating parameters must be validated for each customer application by customer's technical experts. Measurement Specialties, Inc. does not convey any license under its patent rights nor the rights of others.