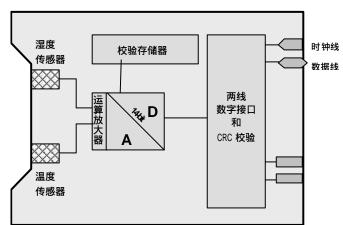

数字温湿度传感器 SHT 1x / SHT 7x

(请以英文为准,译文仅供参考)

- _ 相对湿度和温度测量
- _ 露点测量
- _ 全标定输出,无需标定即可互换使用
- _ 卓越的长期稳定性
- _ 两线制数字接口,无需额外电路
- _ 基于请求式测量,低能耗
- _ 表面贴片或 4 针引脚安装
- _ 超小尺寸
- _ 自动休眠
- 超快响应时间

SHT1x / SHT7x 产品概述

SHTxx 系列产品是一款高度集成的温湿度传感器芯片,提供全量程标定的数字输出。它采用专利的CMOSens? 技术,确保产品具有极高的可靠性与卓越的长期稳定性。传感器包括一个电容性聚合体湿度敏感元件和一个用能隙材料制成的温度敏感元件,这两个敏感元件与一个 14 位的 A/D 转换器以及一个串行接口电路设计在同一个芯片上面。该传感器品质卓越、响应超快、抗干扰能力强、极高的性价比。


每个传感器芯片都在极为精确的恒温室中进行标定, 以镜面冷凝式露点仪为参照。通过标定得到的校准系 数以程序形式储存在芯片本身的 OTP 内存中。

通过两线制的串行接口与内部的电压调整,使外围系统集成变得快速而简单。微小体积、极低功耗等优点使其成为各类应用中的首选。

产品提供表面贴片 LCC 或 4 针单排引脚封装。并可根据用户的不同需求,提供特殊封装形式。

应用领域

框图

订货信息

型号	测湿精度 [%RH]	测温精度 []	封装
SHT10	±4.5	±0.5 在25	SMD (LCC)
SHT11	±3.0	±0.4 在25	SMD (LCC)
SHT15	±2.0	±0.3 在5~40	SMD (LCC)
SHT71	±3.0	±0.4 在25	4-PIN 单排直插
SHT75	±1.8	±0.3 在5~40	4-PIN 单排直插

1 传感器性能说明

参数	条件	Min.	Тур.	Max.	单位
湿度					
分辨率 (2)		0.5	0.03	0.03	%RH
		8	12	12	bit
重复性			±0.1		%RH
精度 " 不确定性	线性化	4	多见图	1	
互换性			可見	完全互持	奂
非线性度	原始数据		±3		%RH
11-5% 注反	线性化		<<1		%RH
量程范围		0		100	%RH
响应时间	1/e (63%) 缓慢流动空气		4		s
迟滞			±1		%RH
长期稳定性	典型值		< 1		%RH/yr
温度					
		0.04	0.01	0.01	° C
分辨率 (2)		0.07	0.02	0.02	° F
		12	14	14	bit
重复性			±0.1		° C
里友社			±0.2		° F
精度		参	见图	1	
量程范围		-40		123.8	° C
里任记回		-40		254.9	° F
响应时间	1/e (63%)	5		30	s

表 1 传感器性能说明

2 接口说明

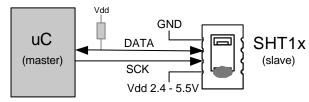
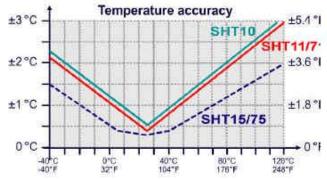


图 2 典型应用电路


2.1 电源引脚

SHTxx 的供电电压为 2.4~5.5V。传感器上电后,要等待 11m 来完成"休眠"状态。在此期间无需发送任何指令。电源引脚(VDD,GND)之间可增加一个 100nF的滤波电容。

2.2 串行接口 (两线双向)

SHTxx 应用的的串行接口技术,在传感器信号读取及电源损耗方面都做了优化处理;但与 I²C 接口不兼容,详见 FAQ。

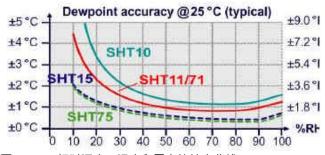


图 1 相对湿度、温度和露点的精度曲线

2.2.1 *串行时钟输入* (SCK)

SCK 用于微处理器与 SHTxx 之间的通讯同步。由于接口包含了完全静态逻辑,因而不存在最小 SCK 频率。

2.2.2 *串行数据* (DATA)

DATA 三态门用于数据的读取。DATA 在 SCK 时钟下降沿之后改变状态,并仅在 SCK 时钟上升沿有效。数据传输期间,在 SCK 时钟高电平时,DATA 必须保持稳定。为避免信号冲突,微处理器应驱动 DATA 在低电平。需要一个外部的上拉电阻(例如:10k)将信号提拉至高电平(参见图 2)。上拉电阻通常已包含在微处理器的 I/O 电路中。详细的 IO 特性,参见表5。

⁽¹⁾每支 SHTxx 传感器在 25 (77 °F)和 48 (118.4 °F),均进行过全量程 RH 精度标定。

 $^{^{(2)}}$ 默认的测量精度为 14bit (温度) 和 12bit (湿度) ,通过状态寄存器可分别降至 12bit 和 8bit。

2.2.3 发送命令

在程序开始,用一组"启动传输"时序表示数据传输的初始化。它包括:当 SCK 时钟高电平时 DATA 翻转为低电平,紧接着 SCK 变为低电平,随后是在 SCK 时钟高电平时 DATA 翻转为高电平。

后续命令包含三个地址位(目前只支持"000"),和五个命令位。SHTxx 会以下述方式表示已正确地接收到指令:在第8个SCK时钟的下降沿之后,将DATA下拉为低电平(ACK位)。在第9个SCK时钟的下降沿之后,释放DATA(恢复高电平)。

命令	代码
预留	0000x
温度测量	00011
湿度测量	00101
读状态寄存器	00111
写状态寄存器	00110
预留	0101x-1110x
软复位,复位接口、清空状态寄存器,,即 清空为默认值 下一次命令前等待至少 11ms	11110

表 2 SHTxx 命令集

2.2.4 *测量时序*(RH 和 T)

发布一组测量命令('00000101'表示相对湿度 RH, '00000011'表示温度 T)后,控制器要等待测量结 束。这个过程需要大约 11/55/210ms,分别对应 8/12/14bit 测量。确切的时间随内部晶振速度,最多 有±15%变化。SHTxx 通过下拉 DATA 至低电平,表示 测量的结束。控制器在触发 SCK 时钟前,必须等待这 个"数据备妥"信号。 接着传输 2 个字节的测量数据和 1 个字节的 CRC 奇偶校验。uC 需要通过下拉 DATA 为低电平,以确认每个字节。所有的数据从 MSB 开始,右值有效(例如:对于 12bit 数据,从第 5 个 SCK 时钟起算作 MSB;而对于 8bit 数据,首字节则无意义)。

用 CRC 数据的确认位,表明通讯结束。如果不使用 CRC-8 校验,控制器可以在测量值 LSB 后,通过保持 确认位 ack 高电平,来中止通讯。

在测量和通讯结束后, SHTxx 自动转入休眠模式。

警告:为保证自身温升低于 0.1 ,SHTxx 的激活时间不要超过 15%(例如,对应 12bit 精度测量,每秒最多进行3次测量)。

2.2.5 通讯复位时序

如果与 SHTxx 通讯中断,可以利用下列信号时序复位 串口:

当 DATA 保持高电平时,触发 SCK 时钟 9 次或更多。 在下一次指令前,发送一个"传输启动"时序。这些时序只复位串口,状态寄存器内容仍然保留。

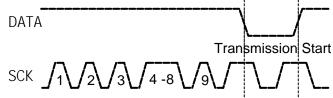


图 4 通讯复位时序

2.2.6 CRC-8 校验

数字信号的整个传输过程由 8bit 校验来确保。任何错误数据将被检测到并清除。

详情可参阅应用说明 " CRC-8 校验 "。

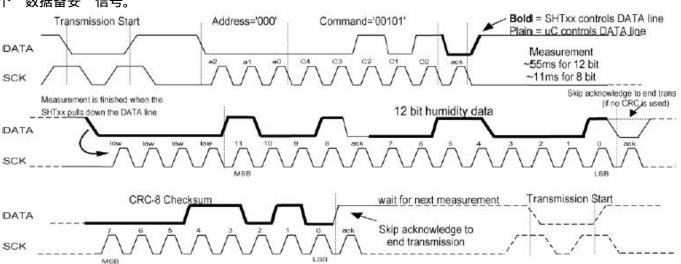


图 5 RH 测量时序举例: "0000'1001' 0011'0001"= 2353 = 75.79 %RH (未包含温度补偿)

SHT1x/SHT7x 系列温湿度 温度传感器

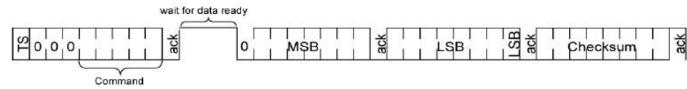


图 6 测量时序概览 (TS = 启动传输)

2.3 状态寄存器

SHTxx 的某些高级功能可以通过状态寄存器实现。下面的章节概括介绍了这些功能。

详情可参阅应用说明"状态寄存器"。

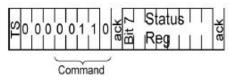


图 7 状态寄存器写

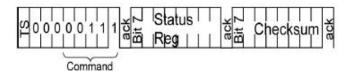


图 8 状态寄存器读

Bit	类型	说明	默认值	
7		预留	0	
6	R	电量不足 (低电压检测) ' 0 ' 对应 Vdd > 2.47 ' 1 ' 对应 Vdd < 2.47	Χ	无默认值, 仅在测量结 束后更新
5		预留	0	
4		预留	0	
3		仅供测试,不使用	0	
2	R/W	加热	0	关
1	R/W	不从 OTP 加载	0	加载
0	R/W	' 1 ' =8bit 湿度/12bit 温度 ' 0 ' =12bit 湿度/14bit 湿度	0	12bit 湿度 14bit 温度

表 3 状态寄存器位

2.3.1 测量分辨率

默认的测量分辨率分别为 14bit (温度)、12bit (湿度),也可分别降至 12bit 和 8bit。通常在高速或超低功耗的应用中采用该功能。

2.3.2 电量不足

"电量不足"功能可监测到 Vdd 电压低于 2.47V 的 状态。精度为 \pm 0.05V。

2.3.3 加热元件

芯片上集成了一个可通断的加热元件。接通后,可将 SHTxx 的温度提高大约 5 (9)。功耗增加 8mA @ 5V。

此功能主要为了比较加热前后的温度和湿度值,可以 综合验证两个传感器元件的性能。

在高湿(>95 %RH)环境中,加热传感器可预防结露,同时缩短响应时间,提高精度。

警告:加热 SHTxx 后温度升高、相对湿度降低,较之加热前,示值略有差异。

2.4 电气特性(1)

VDD=5V , T = 25 , 除非特殊标注

参数	条件	Min.	Тур.	Max.	单位
供电 DC		2.4	5	5.5	V
供电电流	测量		550		μΑ
N-E-E/III	平均	2 ⁽²⁾	28(3)		μΑ
	休眠		0.3	1	μΑ
低电平输出电压		0		20%	Vdd
高电平输出电压		75%		100%	Vdd
低电平输入电压	下降沿	0		20%	Vdd
高电平输入电压	上升沿	80%		100%	Vdd
焊盘上的输入电流				1	μΑ
输出峰值电流	on			4	mΑ
	三态门		10		μΑ

表 4 SHTxx DC 特性

	参数	条件	Min	Тур	Max	单位
F _{SCK}	SCK 频率	VDD > 4.5 V			10	MHz
SUK	00K 9X-	VDD < 4.5 V			1	MHz
T _{REO}	DATA 下降时间	输出负载 5 pF	3.5	10	20	ns
I RFO		输出负载 100	30	40	200	ns
T _{CLx}	SCK 高/低时间		100			ns
Τ _ν	DATA 有效时间			250		ns
T _{SU}	DATA 设定时间		100			ns
T _{HO}	DATA 保持时间		0	10		ns
T_R/T_F	SCK 升/降时间			200		ns

表 5 SHTxx I/O 信号特性

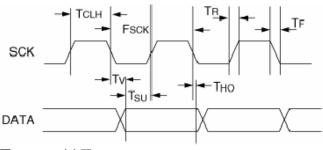


图 9 时序图

⑪试样参数周期抽检但非 100% 检测

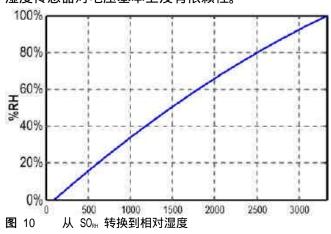
⁽²⁾每秒进行一次 8bit 精度的测量,不加载 OTP

⁽³⁾每秒进行一次 12bit 精度的测量

3 输出转换为物理量

3.1 相对湿度

为了补偿湿度传感器的非线性以获取准确数据,建议使用如下公式修正读数:


$$RH_{linear} = c_1 + c_2 \times SO_{RH} + c_3 \times SO_{RH}^2$$

SO _{RH}	C ₁	C ₂	C3
12 bit	-4	0.0405	-2.8 * 10-6
8 bit	-4	0.648	-7.2 * 10 ⁻⁴

表 6 湿度转换系数

简化的修正算法,可参阅应用说明"相对湿度与温度的非线性补偿"。

湿度传感器对电压基本上没有依赖性。

3.1.1 相对湿度对于温度依赖性的补偿

由于实际温度与测试参考温度25 (~77)的显著 不同 , 应考虑湿度传感器的温度修正系数 :

$$RH_{true} = (T_{\circ C} - 25) \times (t_1 + t_2 \times SO_{RH}) + RH_{tinear}$$

SO _{RH}	t ₁	t ₂
12 bit	0.01	0.00008
8 bit	0.01	0.00128

表 7 温度补偿系数

相当于 ~0.12 %RH / @ 50 %RH

3.2 温度

由能隙材料 PTAT (正比于绝对温度) 研发的温度传感器具有极好的线性。可用如下公式将数字输出转换为温度值:

Temperatue = $d_1 + d_2 \times SO_T$

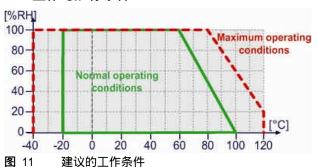
VDD	d ₁ []	d ₁ []
5V	-40.00	-40.00
4V	-39.75	-39.50
3.5\	-39.66	-39.35
3V	-39.60	-39.28
2.5\	-39.55	-39.23

SO _⊤	d ₂ []	d ₂ []
14bit	0.01	0.018
12bit	0.04	0.072

表 8 温度转换系数

在极端工作条件下测量温度时,可使用进一步的补偿 算法以获取高精度。可参阅应用说明"相对湿度与温 度的非线性补偿"。

3.3 露点


由于湿度与温度经由同一块芯片测量, SHTxx 系列产品可以同时实现高质量的露点测量。可参阅应用说明"露点计算"。

⁽¹⁾SO_{RH} 表示传感器的相对湿度输出

SHT1x/SHT7x 系列温湿度 温度传感器

4 应用信息

4.1 工作与贮存条件

超出建议的工作范围可能导致最大 3%的 RH 信号暂时性漂移。当恢复到正常工作条件后,传感器会缓慢自恢复到校正状态。可参阅 4.3 小节的"恢复处理"以加速恢复进程。在非正常条件下的长时间使用,会加速产品的老化。

4.2 暴露在化学物质中

用于湿度测量的聚合物会受到蒸汽的侵蚀,化学物质在聚合物中的扩散可能导致测量元件精度的漂移与灵敏性下降。在纯净的环境中,污染物将缓慢释放。下文所述的恢复处理将加速实现这一过程。 强化学污染可能导致传感器的彻底损坏。

4.3 恢复处理

暴露在极端工作条件或化学蒸汽中的传感器,可通过如下处理,使其恢复到校准状态。

在 80-90 (176-194) 和< 5%RH 的湿度条件下保持 24 小时(烘干); 随后

在 20-30 (70-90) 和>74%RH 的湿度条件下保持 48 小时(重新水合)

4.4 产品资质

本品已经诵讨了大量的多种环境测试。

环境	标准	结果(1)
温度循环	JESD22-A104-B -40 / 125 , 1000cy	符合本手册
高温蒸煮	JESD22-A110-B 2.3bar 125 @5%RH	+2 %RH 的 可逆漂移
食盐蒸气	DIN-50021ss	符合本手册
冷凝空气	-	符合本手册
冷冻循环 完全浸没	-20 / +90 ,100cy 30min 驻留时间	+2 %RH 的 可逆漂移
多种汽车化学品	DIN 72300-5	符合本手册
香烟烟幕	相当于在 中型汽车上 15 年	符合本手册

表 9 品质测试 (摘录)

4.5 ESD (静电释放)

ESD静电释放符合MIL STD 883E method 3015标准。 电路闭锁测试依据JEDEC 17标准,满足强制电流在 ±100 mA,环境温度T_{mb} = 80 条件下不闭锁。 详情可参阅应用说明"ESD、latch-up、EMC"。

4.6 温度影响

气体的相对湿度,在很大程度上依赖于温度。因此在 测量湿度时,应尽可能保证湿度传感器在同一温度下 工作。

如果与释放热量的电子元件共用一个印刷线路板,在 安装时应尽可能将SHTxx远离电子元件,并安装在热 源下方,同时保持外壳的良好通风。

为降低热传导,SHT1x 与印刷电路板其它部分的铜镀层应尽可能最小,并在两者之间留出一道缝隙(参见图 14)。

4.7 用于密封和安装的材质

许多材质吸收湿气并将充当缓冲器的角色,这会加大响应时间和迟滞。因此传感器周边的材质应谨慎选用。推荐使用的材料有:

所有的金属, LCP, POM (Delrin), PTFE (Teflon), PE, PEEK, PP, PB, PPS, PSU, PVDF, PVF 用于密封和粘合的材质(保守推荐)有:
田本港环气材影的东洋港行中之一件的衬法。也推得

用充满环氧树脂的方法进行电子元件的封装,也推荐 使用硅树脂。

4.8 薄膜

薄膜可防止灰尘进入,以保护传感器。同时会减少化 学蒸汽的浓度。为获取最佳的响应时间,薄膜内的空 气量必须保持在最少。

4.9 光线

SHTxx 对光线不敏感。但长时间暴露在太阳光下或强烈的紫外线辐射中,会使外壳老化。

4.10 接线注意事项与信号完整性

使SCK和DATA信号线平行并尽可能使间距超过10cm(如使用导线),否则将导致串扰和信号丢失。解决方法是在两个信号线之间放置VDD和/或GND。详情可参阅应用说明"ESD、latch-up和EMC"。如使用导线,应在电源引脚(VDD,GND)之间可增加一个 100nF 的电容,用以去耦滤波。

[🕦] 温度传感器通过了所有的测试,没有任何漂移。 亦 100%通过包装及电子测试。

SHT1x/SHT7x 系列温湿度 温度传感器

5 包装信息

5.1 SHT1x (表面贴装)

Pin	名称	注释
1	GND	地
2	DATA	串行数据,双向
3	SCK	串行时钟,输入
4	VDD	供电 2.4 - 5.5 V
	NC	剩余引脚请勿连结

表 10 SHT1x 引脚说明

5.1.1 包装类型

SHT1x 采用表面贴装LCC(无铅芯片载体)包装方式。液晶聚合物环氧包覆外壳,标准0.8 mm FR4衬底。不含铅、铬、汞。

尺寸:7.62×5.08×2.5 mm

重量:100 毫克

生产日期用白色数字标识于传感器顶部,格式为:

周/周/年。例如:

"351"表示第35周,2001年。

5.1.2 运输条件

SHT1x 置于标准 IC 管中运输,每管 80 片,或以 12mm 胶带卷装。胶盘以条形码或可读标签做单独标记。

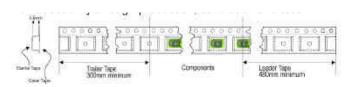


图 12 胶带结构和单片包装

5.1.3 安装举例

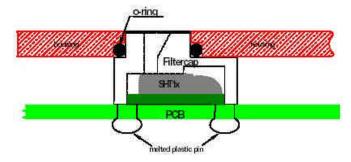


图 13 SHT1x 安装举例

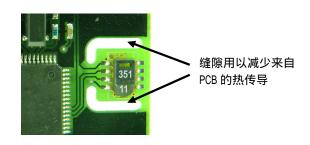


图 14 SHT1x PCB 安装举例

5.1.4 焊接信息

使用标准的回流焊炉,在最高 250 的温度条件下不超过 30 秒。

手动焊接,在最高 350 的温度条件下接触时间须少于 5 秒。

焊接后,将传感器在>74%RH的环境下存放至少48小时,以保证聚合物的重新水合。

详情可参阅应用说明"焊接规程"。

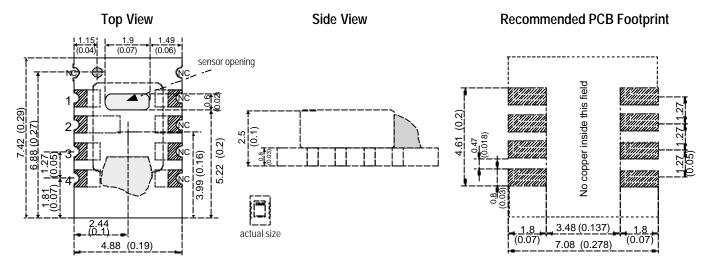


图 15 SHT1x 尺寸图和引脚尺寸 mm (inch)

5.2 SHT7x (4-pin 单排引脚)

Pin	名称	注释
1	SCK	串行时钟,输入
2	VDD	供电 2.4 - 5.5 V
3	GND	地
4	DATA	串行数据,双向

表 11 SHT7x 引脚说明

5.2.1 包装类型

SHT7x采用4针的单排引脚形式包装。液晶聚合物环氧包覆外壳,标准0.8mm FR4衬底。不含铬、汞。

传感器头部通过桥接方式实现与引脚的连接,以降低热传导及加速响应时间。传感器头部背面的镀金板与GND引脚相连。

在背面VDD与GND之间安装了一个100nF的电容。

所有引脚均镀金处理,以防腐蚀。可焊接使用,也可与1.27mm(0.05")的插槽匹配。

例如: Preci-dip/Mil-Max 851-93-004-20-001或类似产品。

总重量:168mg, 传感器头部重量:73mg

生产日期用白色数字标识于传感器顶部,格式为:周/周/年。例如:

"351"表示第35周,2001年。

5.2.2 运输条件

SHT7x 以 32mm 胶带卷装运输。每个直径为 13 英寸的标准胶盘可装 500 片。胶盘以条形码或可读标签做单独标记。

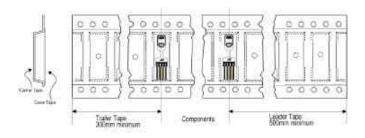


图 16 胶带结构和单片包装

5.2.3 焊接信息

使用标准的波动焊炉,在最高 250 的温度条件下不超过 30 秒。

手动焊接,在最高 350 的温度条件下接触时间须少于 5 秒。

焊接后,将传感器在>74%RH的环境下存放至少48小时,以保证聚合物的重新水合。

详情可参阅应用说明"焊接规程"。

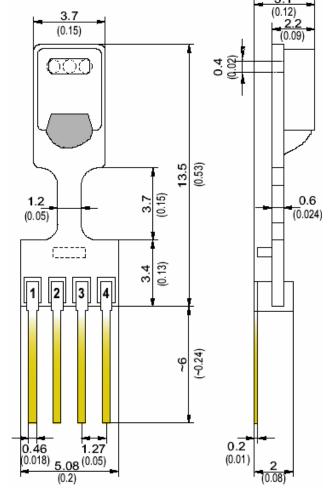


图 17 SHT7x 尺寸 mm (inch)

⁽¹⁾可根据特殊需求提供其它包装方式。

6 版本

日期	版本	页数(s)	变更
2002.02	初稿	1-9	首次发布。
2002.06	初稿	1-9	増加了 SHT7x 的内容。
2003.03	定稿 V2.0	1-9	大调整,增加了应用说明部分。多方面的小改动。
	V2.01	1-9	打字稿,加入曲线标注。
2004.07	V2.02	1-9	升级规格书,增加 SF1 的说明。并改善措词。
2005.04	V2.03	1-9	增加 SHT10 的说明。
2005.05	V2.04	1-9	更改公司地址。

最新版本及应用说明可从以下网页下载:

www.sensirion.com/humidity

7注意事项

7.1 警告,人身伤害

勿将本产品作为安全保护或急停设备,以及其它由于本产品故障导致人身伤害的应用中。

如不遵从此建议,可能导致死亡和严重的人身伤 害。

任何人购买或应用盛世瑞恩公司产品在上述场合,需要自己承担上述风险。如果因为不当使用本产品造成的损失(包括财产损失、人身伤害及由此直接或间接产生的诉讼费用),即使这些损失确实是由于盛世瑞恩产品造成的,盛世瑞恩公司及公司员工、分公司、授权公司、分销商等都不对承担任何连带责任。

7.2 ESD 静电释放的预防

由于元件的固有设计,导致其对静电的敏感性。为防止静电导入的伤害或者降低产品性能,在应用本产品时,请采取必要的防静电措施。

详情可参阅应用说明"ESD、latch-up、EMC"。

7.3 品质保证

SENSIRION AG对其产品应用在那些特殊的应用场合不做任何的保证、担保、或是书面陈述。

同时SENSIRION AG对其产品应用到产品或是电路中的可靠性也不做任何承诺。

版权所有? 2001-2005, SENSIRION AG. 如有更改,恕不事先通知。

区域代理商	:		

SUNSTAR传感与控制 http://www.sensor-ic.com/ TEL:0755-83376549 FAX:0755-83376182 E-MAIL:szss20@163.com

欢迎免费索取详细资料、设计指南

中国传感器科技信息网: HTTP://WWW.SENSOR-IC.COM/

工控安防网: HTTP://WWW.PC-PS.NET/ 消费电子专用电路网: HTTP://WWW.SUNSTARE.COM/

地址: 深圳市福田区福华路福庆街鸿图大厦1602室

E-MAIL: <u>szss20@163.com</u>

电话: 0755-83370245 83338339 83376549 83376489

传真: 0755-83376182 83338339 邮编: 518033 手机: (0)13902971329

E-MAIL:xjr5@163.com

MSN: <u>SUNS8888@hotmail.com</u> QQ: 195847376

技术支持: 0755-83394033 13501568376

深圳展销部:深圳华强北路赛格电子市场2583号 TEL/FAX: 0755-83665529 25059422 北京分公司:北京海淀区知春路132号中发电子大厦3

TEL: 010-81159046 82615020 13501189838

FAX: 010-82613476

上海分公司:上海市北京东路668号上海賽格电子市均

TEL: 021-28311762 56703037 13701955389

FAX: 021-56703037

西安分公司:西安高新开发区20所

(中国电子科技集团导航技术研究所)

西安劳动南路88号电子商城二楼D23号

TEL: 029-81022619 13072977981

FAX:029-88789382

SUNSTAR商斯达实业集团是集研发、生产、工程、销售、代理经销 、技术咨询、信息服务等为一体的高 科技企业,是专业高科技电子产品生产厂家,是具有10多年历史的专业电子元器件供应商,是中国最早和 最大的仓储式连锁规模经营大型综合电子零部件代理分销商之一,是一家专业代理和分銷世界各大品牌IC 芯片和電子元器件的连锁经营綜合性国际公司。在香港、北京、深圳、上海、西安、成都等全国主要电子 市场设有直属分公司和产品展示展销窗口门市部专卖店及代理分销商,已在全国范围内建成强大统一的供 货和代理分销网络。 我们专业代理经销、开发生产电子元器件、集成电路、传感器、微波光电元器件、工 控机/DOC/DOM电子盘、专用电路、单片机开发、MCU/DSP/ARM/FPGA软件硬件、二极管、三极管、模 块等,是您可靠的一站式现货配套供应商、方案提供商、部件功能模块开发配套商。专业以现代信息产业 (计算机、通讯及传感器)三大支柱之一的传感器为主营业务,专业经营各类传感器的代理、销售生产、 网络信息、科技图书资料及配套产品设计、工程开发。我们的专业网站——中国传感器科技信息网(全球 传感器数据库)www.SENSOR-IC.COM 服务于全球高科技生产商及贸易商,为企业科技产品开发提供技 术交流平台。欢迎各厂商互通有无、交换信息、交换链接、发布寻求代理信息。欢迎国外高科技传感器、 变送器、执行器、自动控制产品厂商介绍产品到 中国,共同开拓市场。本网站是关于各种传感器-变送器-仪器仪表及工业自动化大型专业网站,深入到工业控制、系统工程计 测计量、自动化、安防报警、消费电 子等众多领域, 把最新的传感器-变送器-仪器仪表买卖信息, 最新技术供求, 最新采购商, 行业动态, 发展方 向,最新的技术应用和市场资讯及时的传递给广大科技开发、科学研究、产品设计人员。本网站已成功为 石油、化工、电力、医药、生物、航空、航天、国防、能源、冶金、电子、工业、农业、交通、汽车、矿 山、煤炭、纺织、信息、通信、IT、安防、环保、印刷、科研、气象、仪器仪表等领域从事科学研究、产 品设计、开发、生产制造的科技人员、管理人员 、和采购人员提供满意服务。 我公司专业开发生产、代 理、经销、销售各种传感器、变送器、敏感元器件、开关、执行器、仪器仪表、自动化控制系统: 专门从 事设计、生产、销售各种传感器、变送器、各种测控仪表、热工仪表、现场控制器、计算机控制系统、数 据采集系统、各类环境监控系统、专用控制系统应用软件以及嵌入式系统开发及应用等工作。如热敏电阻、 压敏电阻、温度传感器、温度变送器、湿度传感器、 湿度变送器、气体传感器、 气体变送器、压力传感 器、 压力变送、称重传感器、物(液)位传感器、物(液)位变送器、流量传感器、 流量变送器、电流 (压) 传感器、溶氧传感器、霍尔传感器 、图像传感器、超声波传感器、位移传感器、速度传感器、加速 度传感器、扭距传感器、红外传感器、紫外传感器、 火焰传感器、激光传感器、振动传感器、轴角传感器、 光电传感器、接近传感器、干簧管传感器、继电器传感器、微型电泵、磁敏(阻)传感器 、压力开关、接 近开关、光电开关、色标传感器、光纤传感器、齿轮测速传感器、 时间继电器、计数器、计米器、温控仪、 固态继电器、调压模块、电磁铁、电压表、电流表等特殊传感器。 同时承接传感器应用电路、产品设计 和自动化工程项目。

更多产品请看本公司产品专用销售网站:

商斯达中国传感器科技信息网: http://www.sensor-ic.com/

商斯达工控安防网: http://www.pc-ps.net/

商斯达电子 元器件网: http://www.sunstare.com/

商斯达微波光电产品网:HTTP://www.rfoe.net/

商斯达消费电子产品网://www.icasic.com/

商斯达军工产品网:http://www.junpinic.com/

商斯达实业科技产品网://www.sunstars.cn/传感器销售热线:

地址:深圳市福田区福华路福庆街湾图大厦 1602 室

电话: 0755-83607652 83376489 83376549 83370250 83370251 82500323

传真: 0755-83376182 (0) 13902971329 MSN: SUNS8888@hotmail.com

邮编: 518033 E-mail:szss20@163.com QQ: 195847376

深圳赛格展销部: 深圳华强北路赛格电子市场 2583 号 电话: 0755-83665529 25059422

技术支持: 0755-83394033 13501568376

欢迎索取免费详细资料、设计指南和光盘 ; 产品凡多,未能尽录,欢迎来电查询。

北京分公司:北京海淀区知春路 132 号中发电子大厦 3097 号

TEL: 010-81159046 82615020 13501189838 FAX: 010-62543996

上海分公司: 上海市北京东路 668 号上海賽格电子市场 D125 号

TEL: 021-28311762 56703037 13701955389 FAX: 021-56703037

西安分公司: 西安高新开发区 20 所(中国电子科技集团导航技术研究所)

西安劳动南路 88 号电子商城二楼 D23 号

TEL: 029-81022619 13072977981 FAX:029-88789382