
SASM63K
User’s Manual

Program Development Support Software

First Edition
 August 1997

NOTICE

1. The information contained herein can change without notice owing to product and/or
technical improvements. Before using the product, please make sure that the
information being referred to is up-to-date.

2. The outline of action and examples for application circuits described herein have been
chosen as an explanation for the standard action and performance of the product.
When planning to use the product, please ensure that the external conditions are
reflected in the actual circuit and assembly designs.

3. When developing and evaluating your product, please use our product below the
specified maximum ratings and within the specified operating ranges including, but not
limited to, operating voltage, power dissipation, and operating temperature.

4. OKI assumes no responsibility or liability whatsoever for any failure or unusual or
unexpected operation resulting from misuse, neglect, improper installation,
repair, alteration or accident, improper handling, or unusual physical or
electrical stress including, but not limited to, exposure to parameters beyond the
specified maximum ratings or operation outside the specified operating range.

5. Neither indemnity against nor license of a third party's industrial and intellectual
property right, etc. is granted by us in connection with the use of product and/or the
information and drawings contained herein. No responsibility is assumed by us for any
infringement of a third party's right which may result from the use thereof.

6. The products listed in this document are intended only for use in development and
evaluation of control programs for equipment and systems. These products are not
authorized for other use (as an embedded device and a peripheral device).

7. Certain products in this document may need government approval before they can be
exported to particular countries. The purchaser assumes the responsibility of
determining the legality of export of these products and will take appropriate and
necessary steps at their own expense for these.

8. No part of the contents contained herein may be reprinted or reproduced without our
prior permission.

9. MS-DOS is a registered trademark of Microsoft Corporation.

Copyright 1999 Oki Electric Industry Co., Ltd.

2

PREFACE

This manual describes SASM63K, a structured assembler for the OLMS-63K series of 4-bit single-chip microcontrollers.
The contents of this manual are written for developers with some experience using assembly language.

SASM63K operates under MS-DOS. It is supplied on a floppy disk.

Typographical conventions

Symbol Meaning

CAPITALS Items appearing in all capitals are to be typed in exactly as given.

italics Items appearing in italics are not to be typed as given, but rather replaced with values giving
the necessary information.

[] The contents of the brackets are optional and may be omitted.

... The item preceding the ellipsis may be repeated as many times as necessary.

value1 ~ value2 The tilde indicates a range spanning all values between the designated endpoints.

PROGRAM Vertically aligned dots indicate a program segment that has been omitted. .
 .

 .
PROGRAM

n2 This notation indicates a constant expression with a value from 0 to 3.

n4 This notation indicates a constant expression with a value from 0 to 15.

n8 This notation indicates a constant expression with a value from 0 to 255.

n16 This notation indicates a constant expression with a value from 0 to 65535.

TABLE OF CONTENTS

Chapter 1. Introduction

1.1 Functional Overview ... 1-1
1.2 Sample Program .. 1-3
1.3 DCL Files ... 1-5

1.3.1 File Name .. 1-5
1.3.2 DCL File Search .. 1-5
1.3.3 DCL File Contents .. 1-6
1.3.4 DCL63K.DOC .. 1-7
1.3.5 Error Processing .. 1-8

1.4 OLMS-63K Series Memory Spaces .. 1-9
1.4.1 Program Memory .. 1-9
1.4.2 Data Memory .. 1-10
1.4.3 External Memory .. 1-10
1.4.4 Expanding External Memory ... 1-11

1.5 Address Spaces and Segments ... 1-13

Chapter 2. Starting SASM63K

2.1 Starting Methods ... 2-1
2.1.1 Starting Method 1 ... 2-1
2.1.2 Starting Method 2 ... 2-1

2.2 File Specifications .. 2-2
2.3 Options .. 2-4
2.4 Exit Codes .. 2-6
2.5 Examples of Starting SASM63K ... 2-7

Chapter 3. Assembly Language Syntax

3.1 Characters Allowed in Programs .. 3-1
3.2 Structual Elements of Source Programs ... 3-2

3.2.1 Instruction Statements ... 3-2
3.2.2 Directive Statements .. 3-2
3.2.3 Control Statements .. 3-2

3.3 Statement Format for Basic Instructions .. 3-3
3.3.1 Label Field .. 3-3
3.3.2 Instruction and Operand Fields .. 3-3
3.3.3 Comment Field .. 3-3

3.4 Symbols .. 3-4
3.4.1 Reserved Word Symbols .. 3-4

3.4.1.1 Instructions ... 3-4
3.4.1.2 Directives .. 3-4

1

3.4.1.3 Registers ... 3-5
3.4.1.4 Operators .. 3-5
3.4.1.5 Device-Specific Addresses .. 3-5
3.4.1.6 Special Instruction Operands .. 3-5
3.4.1.7 Special Directive Operands ... 3-6
3.4.1.8 Symbols Starting with a Question Mark (?) ... 3-6

3.4.2 User-Defined Symbols ... 3-6
3.4.3 Location Counter Symbol .. 3-8
3.4.4 Symbol Scope and Overlapping Definitions ... 3-8

3.5 Constants ... 3-9
3.5.1 Integer Constants .. 3-9
3.5.2 Character Constants .. 3-11
3.5.3 String Constants .. 3-12

3.6 Operators ... 3-13
3.6.1 Arithmetic Operators ... 3-14
3.6.2 Logical Operators .. 3-15
3.6.3 Bitwise Logical Operators ... 3-15
3.6.4 Relational Operators .. 3-16
3.6.5 Dot Operator ... 3-17
3.6.6 Special Operator .. 3-17
3.6.7 Operator Precedence .. 3-18

3.7 Comments .. 3-19
3.8 Addressing Modes ... 3-20

3.8.1 Immediate Addressing ... 3-22
3.8.1.1 4-Bit Immediate Addressing ... 3-22

3.8.2 Register Addressing .. 3-23
3.8.2.1 Register Direct Addressing ... 3-23

3.8.3 Data Memory Addressing .. 3-24
3.8.3.1 4 Kilonybble Direct Addressing .. 3-24
3.8.3.2 SFR Bank Direct Addressing .. 3-25
3.8.3.3 Current Bank Direct Addressing ... 3-25
3.8.3.4 HL Register Indirect Addressing ... 3-26
3.8.3.5 XY Register Indirect Addressing ... 3-27
3.8.3.6 Extra Bank HL Register Indirect Addressing 3-27
3.8.3.7 Extra Bank XY Register Indirect Addressing 3-28
3.8.3.8 Post-Increment HL Register Indirect Addressing 3-29
3.8.3.9 Post-Increment XY Register Indirect Addressing 3-30
3.8.3.10 Post-Increment Extra Bank HL Register Indirect Addressing 3-31
3.8.3.11 Post-Increment Extra Bank XY Register Indirect Addressing 3-32

3.8.4 Program Memory Addressing .. 3-33
3.8.4.1 64 Kiloword Direct Addressing ... 3-33
3.8.4.2 4 Kiloword Page Addressing ... 3-35
3.8.4.3 PC-Relative Addressing .. 3-36
3.8.4.4 PC-Based Addressing .. 3-36
3.8.4.5 RA Register Indirect Addressing ... 3-37

3.8.5 External Memory Addressing .. 3-37
3.8.5.1 64 Kilobyte Direct Addressing ... 3-37
3.8.5.2 RA Register Indirect Addressing .. 3-38

2

Chapter 4. Directives

4.1 Symbol Definitions .. 4-1
4.1.1 EQU .. 4-1
4.1.2 SET ... 4-2
4.1.3 CODE ... 4-3
4.1.4 DATA ... 4-3
4.1.5 BIT ... 4-4
4.1.6 XDATA .. 4-5

4.2 Memory Segment Control ... 4-6
4.2.1 CSEG .. 4-6
4.2.2 DSEG .. 4-7
4.2.3 BSEG .. 4-7
4.2.4 XSEG .. 4-8

4.3 Location Counter Control ... 4-9
4.3.1 ORG .. 4-9
4.3.2 DS ... 4-10
4.3.3 DBIT ... 4-11

4.4 Data Definitions ... 4-12
4.4.1 DB .. 4-12
4.4.2 DW ... 4-13

4.5 Listing Control .. 4-14
4.5.1 DATE ... 4-14
4.5.2 TITLE ... 4-15
4.5.3 PAGE .. 4-15
4.5.4 OBJ/NOOBJ .. 4-16
4.5.5 PRN/NOPRN .. 4-17
4.5.6 ERR/NOERR .. 4-18
4.5.7 SYM/NOSYM ... 4-19
4.5.8 REF/NOREF ... 4-20
4.5.9 DEBUG/NODEBUG ... 4-21
4.5.10 LIST/NOLIST ... 4-22

4.6 Checking CBR Bank Number .. 4-23
4.6.1 USING BANK .. 4-23

4.7 Assembler Control ... 4-25
4.7.1 TYPE .. 4-25
4.7.2 END .. 4-26

4.8 Preprocessor Directives ... 4-27
4.8.1 INCLUDE ... 4-27
4.8.2 DEFINE .. 4-28
4.8.3 SUBR .. 4-29
4.8.4 REFER .. 4-31
4.8.5 Macro Definitions ... 4-32
Macro Calls .. 4-33

4.9 Optimized Branch Directives .. 4-35
4.9.1 Optimization of Jump Instructions ... 4-35
4.9.2 Optimization of Conditional Jump Instructions .. 4-37
4.9.3 Optimization of Call Instructions ... 4-38

3

4.9.4 Conversion Rules ... 4-39
4.9.5 Directive Expansions ... 4-40

Chapter 5. SASM Instructions

5.1 SASM Instruction Syntax .. 5-1
5.1.1 Data Objects .. 5-2
5.1.2 Operators .. 5-4
5.1.3 Options ... 5-5
5.1.4 Limits on Data Objects .. 5-6
5.1.5 Special Instructions ... 5-7
5.1.6 SASM Instruction Expansion .. 5-7

Chapter 6. SASM Instruction Details

6.1 Nybble Assignments .. 6-1
6.2 Nybble Exchanges ... 6-2
6.3 Nybble Additions and Subtractions .. 6-3
6.4 Nybble Logical Operations ... 6-5
6.5 Nybble Shifts ... 6-6
6.6 Nybble Increments and Decrements ... 6-8
6.7 Bit Assignments ... 6-10
6.8 Special Instructions ... 6-11

Chapter 7. Control Statements

7.1 Bit Expressions .. 7-1
7.1.1 Structural Elements of Bit Expressions .. 7-1
7.1.2 Operators in Bit Expressions ... 7-2

7.2 Control Statement Types ... 7-3
7.3 IF-ELSE-ELSEIF Statement .. 7-4
7.4 WHILE Statement .. 7-6
7.5 REPEAT-UNTIL Statement ... 7-7
7.6 SWITCH-CASE Statement ... 7-8
7.7 FOR Statement .. 7-10
7.8 BREAK Statement .. 7-11
7.9 CONTINUE Statement ... 7-12

4

Chapter 8. Error Messages

8.1 Syntax Errors .. 8-1
8.2 Warning Messages .. 8-4
8.3 Fatal Errors ... 8-5

Chapter 9. Output Files

9.1 Object Files .. 9-1
9.1.1 Byte-Divided HEX Files .. 9-2
9.1.2 Debugging Information ... 9-3
9.1.3 Intel HEX Format Files ... 9-5

9.2 Print File .. 9-7
9.3 Cross Reference List ... 9-10
9.4 Symbol List .. 9-11
9.5 Error File ... 9-12
9.6 Assembly Source File .. 9-13

Chapter 10. Sample Program

10.1 Sample Program Specifications .. 10-1
10.1.1 Sample Program Function ... 10-1
10.1.2 Program Specifications .. 10-1

10.2 File Organization .. 10-3

Appendices Reserved Words

A.1 Basic Instructions ... App.-1
A.2 Directives ... App.-1
A.3 Registers ... App.-1
A.4 Operators .. App.-1
A.5 Control Statements ... App.-1
A.6 Data Objects ... App.-2
A.7 SASM Instruction Options .. App.-2
A.8 Addresses ... App.-2

Chapter 1

Introduction
This chapter describes the assembler’s functions.

Chapter 1, Introduction

1-1

1.1 Functional Overview

SASM63K is a structured assembler for the OLMS-63K series of 4-bit single-chip microcontrollers. A structured assembler
accepts a new type of assembly language that combines the coding ease of high-level languages with the high coding
efficiency of assembly language. This combination greatly raises overall application program development efficiency.

SASM63K has the following features.

l Replaces the ASM63KN assembler

SASM63K is upward compatible with the ASM63KN assembler. It assembles all source programs previously written for
ASM63KN. Programmers can incorporate the new features of SASM63K a few at a time into their previous
programming style for an easy transition to SASM63K programming.

l Adds extended instructions (SASM instructions)

Extended instructions are special macros that combine native chip instructions to enhance working with data. An
extended instruction can, for example, express a memory-to-memory transfer with a single statement. The coding style is
also similar to high-level languages, so programs are much easier to read and understand.

l Supports flow control blocks

Programs can use the same IF, WHILE, and other flow control statements available in high-level languages for a
structured programming approach that makes programs easier to maintain and update.

l Adds preprocessor directives

SASM63K adds preprocessor directives for macros and include files. Programmers can therefore define their own
macros.

SASM63K assembles source files making reference to the contents of DCL files. A DCL file contains device-specific
information for a particular microcontroller. Changing DCL files is all it takes to adapt SASM63K for a different member
of the OLMS-63K series. A source file is a program written in OLMS-63K series assembly language.

The assembler's basic function is translating the mnemonic codes written in the source file into object code. These
mnemonic codes are symbolic instructions assigned to individual machine language instructions.

SASM63K produces the following files from the source file: object files, a listing file, an error file, and an assembly source
file.

Chapter 1, Introduction

1-2

The object files consist of two byte-divided HEX files containing the object code and Intel HEX format files containing the
initialization data for external memory. (For further information on byte-divided HEX files and Intel HEX format files, see
Chapter 9 "Output Files.")

The listing file lists the mnemonics alongside the machine language that they generate.

The error file consists of error messages and the source file statements that generated the errors. In the absence of any
specification to the contrary, this file goes to standard output, the screen.

The assembly source file contains the source code with preprocessor directives and extended instructions expanded. It may
be assembled with ASM63KN Ver. 1.01 or higher as well as with SASM63K itself.

Figure 1.1 Input/Output Flow

Print fileSASM63K

Error file

Object file

Object file

Assembly
source file

.PRN

.ERR

.HXH,.HXL

.H00 to .HFF

.

.

.

.

.

.

.

.

.SRC

.ASM
Source file

DCL file
.DCL

Chapter 1, Introduction

1-3

1.2 Sample Program

Here is a small sample SASM63K program to start with.

 1: TYPE (M63188)

 2: TITLE "SASM63K Sample Program"

 3:

 4: INCLUDE(SYMBOL.DEF)

 5:

 6: DEFINE RESET_DATA 0H

 7:

 8: MACRO INC_BCD()

 9: IF ([] == 9)

10: [+] = 0

11: IF ([] == 9)

12: [] = 0

13: ELSE

14: []++

15: ENDI

16: ELSE

17: []++

18: ENDI

19: ENDM

20:

21: ORG 100H

22: MAIN :

23: [CBR] = 15

24: [COUNT_DATA] = RESET_DATA

25: [COUNT_DATA+1] = RESET_DATA

26: CAL DSP_LCD

27: WHILE (TRUE)

28: IF (_Q2HZ)

29: _Q2HZ = FALSE

30: HL = COUNT_DATA & 0FFH

31: INC_BCD()

32: CAL DSP_LCD

33: ENDI

34: ENDW

Chapter 1, Introduction

1-4

This program uses many SASM instructions instead of the CPU's basic instructions. The
[COUNT_DATA]=RESET_DATA on line 24 is one of these. This instruction assigns the value RESET_DATA to the
address COUNT_DATA in the current bank. It corresponds to the basic instruction MOV 0F00H,#0H. SASM
instructions are close to high-level language code, so programs are easier to write and read. Some SASM instructions
expand into multiple basic instructions.

The definition of the symbol RESET_DATA with the DEFINE directive on line 6 causes RESET_DATA to be replaced
with the string "0H" each place that it occurs in the source program. Another preprocessor directive is the INCLUDE
directive on line 4. In this example, line 4 expands to the contents of the file SYMBOL.DEF.

The macro definition on lines 8 to 19 and the macro call on line 31 are also preprocessor directives. In this example, the
symbol INC_BCD is defined as a macro. At the point that it is called in line 31, it is expanded to the contents of lines 9 to
18. Macros can also take parameters and declare local labels.

The WHILE statement block on lines 27 to 34 causes the inner statements to be executed until the specified condition is no
longer satisfied. Statements that like the WHILE statement control program flow are called flow control statements. This
sample program contains an additional flow control statement, the IF statement block on lines 28 to 33.

Chapter 1, Introduction

1-5

1.3 DCL Files

A DCL file contains device-specific information for a particular microcontroller. Changing DCL files configures
SASM63K for a different member of the OLMS-63K series. DCL files are text files. The DCL file must be specified with
the TYPE directive.

1.3.1 File Name

The assembler determines the DCL file name based on the device name specified in the TYPE directive.

DCL file name = devicename.DCL

1.3.2 DCL File Search

The assembler searches for the DCL file in the following sequence. The DCL file must therefore be placed somewhere
specified by one of these paths.

1. Search the directory contained in the DCL file specification in the TYPE directive (normally the current directory).

2. Search the directories contained in the PATH environment variable. If the DCL file specification contains an explicit
path, however, this search is not performed.

Below are examples. Assume that the PATH environment variable has been defined as follows.

PATH=A: BIN;A: ;DCL;

Chapter 1, Introduction

1-6

n Example 1 n TYPE (M63XXX) is specified.

1. The assembler searches for M63XXX.DCL in the current directory.

2. If (1) fails to find the file, the assembler searches in the following order based on the PATH environment variable.

A: BIN M63XXX.DCL
A: M63XXX.DCL
DCL M63XXX.DCL

n Example 2 n TYPE (DCL M63XXX) is specified .

1. The assembler searches for M63XXX.DCL in the DCL subdirectory of the current directory.

2. If (1) fails to find the file, the search terminates because the DCL file specification contains an explicit path specification
(DCL).

1.3.3 DCL File Contents

A DCL file contains the following device-specific information about the microcontroller.

(1) Program memory available

SASM63K uses this information to check the values of operands accessing the program memory space.

(2) Data memory available

SASM63K uses this information to check the values of operands accessing the data memory space and the bit address
space. It also checks accesses to the SFR area to see whether the target addresses are, in fact, accessible.

There are the following types of information pertaining to data memory.

l Data area of target device
l SFR area of target device

Chapter 1, Introduction

1-7

(3) External memory available

SASM63K uses this information to check the values of operands accessing the external memory space.

(4) SFR area access attributes

SASM63K uses this information to check accesses to the SFR area.

(5) Data address symbols

These are predefined symbols specifying addresses to SASM63K. They may be used in place of addresses in operands.

(6) Permitted instruction mnemonics

SASM63K recognizes only the instruction mnemonics specified in the DCL file. Other instructions produce errors.

1.3.4 DCL63K.DOC

This manual covers all microcontrollers in the OLMS-63K series, referring the reader to the corresponding DCL file for
device-specific information for the individual microcontroller.

The file DCL63K.DOC describes the information contained in the DCL file.

n Note n

Never attempt to rewrite the contents of a DCL file. Assembler results are not guaranteed if source files are assembled using
a DCL file that has been modified.

Chapter 1, Introduction

1-8

1.3.5 Error Processing

The DCL file is processed in the assembler's first phase. This processing continues through to the end of the DCL file
regardless of any errors. If the assembler detects an error during this processing, it displays an error message on the screen
and continues processing the DCL file. Once it has finished processing the DCL file, it checks for errors.

If there have been any errors at all, the assembler aborts without performing any further processing. If there are no errors, it
goes on to process the source file.

Chapter 1, Introduction

1-9

1.4 OLMS-63K Series Memory Spaces

The OLMS-63K series has three memory spaces:

l Program memory
l Data memory
l External memory

Program memory is addressed in terms of 16-bit words; data memory, in terms of nybbles or bits; the external memory, in
terms of bytes.

The address ranges for each memory space vary with the target microcontroller. (See Section 1.2 "DCL Files.")

1.4.1 Program Memory

The following shows the program memory space for the OLMS-63K series.

Sample Program Memory Space

For the address ranges for these areas, refer to the hardware manual for the target microcontroller.

Test data area

Interrupt area

Start area

0FFFFH

0FFE0H
0FFDFH

00FFH

0001H

0000H

Chapter 1, Introduction

1-10

1.4.2 Data Memory

The following shows the data memory space for the OLMS-63K series.

Sample Data Memory Space

For the address ranges for these areas, refer to the hardware manual for the target microcontroller.

1.4.3 External Memory

The following shows the external memory space for the OLMS-63K series.

Sample External Memory Space

For the address ranges for these areas, refer to the hardware manual for the target microcontroller.

SFR area

0FFFH

100H
0FFH

000H

0FFFFH

0000H

Chapter 1, Introduction

1-11

1.4.4 Expanding External Memory

The OLMS-63K series supports an external memory space of 64 kilobytes. Some application programs, however, require
more. One way of providing additional external memory space is to adapt the target microcontroller ports for use in
expanding addresses.

SASM63K considers 64 kilobytes as a single bank. These banks are called external memory banks to distinguish them from
data memory banks.

SASM63K provides the following functions for supporting the expansion of the external memory space to 16 megabytes.

l It generates separate HEX files for each external memory bank.

l The ORG directive includes support for specifying the bank for external memory bank initialization code. See Section
4.3.1 "ORG."

l Address symbols may be defined in external memory banks. See Section 4.1.6 "XDATA."

l The XBANK operator gives the external bank number for address symbols defined with the XDATA directive and labels
in the external memory areas. See Section 3.5.6 "Special Operators.")

Chapter 1, Introduction

1-12

n Example n

The following Figure gives an example of an expanded memory configuration. The example uses Port B (PB) as the
external memory bank selector.

Figure 1.2 External Memory Expansion Example

The following code fragment shows how to access this expanded external memory.

XSEG
ORG 0H ; Bank 0

XSYM00: DB 10H ; Data specification
XSYM01: DB 20H ;
XSYM02: DB 30H ;

.

.

.
ORG 1:0H ; Bank 1

XSYM10: DB 40H ; Data specification
XSYM11: DB 50H ;
XSYM12: DB 60H ;

.

.

.
CSEG
MOV A,#XBANK XSYM11 ; Switch to external memory bank 1
MOV PB,A ;

;
MOVXB [HL],XSYM11 ; Move the 50H value from byte 01H in the external memory

; bank to the address in data memory contained in the HL
; register.

Micro-
controller

P4.0
to

P7.3

P9.0
 to
PA.3

PB.0
 to
PB.3

Data bus

Address bus

Decoder

External
memory
bank0

 CE

External
memory
bank1

 CE

External
memory
bank15

 CE

......

Chapter 1, Introduction

1-13

1.5 Address Spaces and Segments

SASM63K divides memory spaces according to how their addresses are assigned. These logical spaces are called address
spaces.

There are the following types of address spaces.

Address Spaces

Address Space Description

CODE address space Program memory space, addressed in word (16-bit) increments

DATA address space Data memory space, addressed in nybble increments

BIT address space Data memory space, addressed in bit increments

XDATA address space External memory space, addressed in byte increments

The XDATA address space exists only when external memory is physically present.

When writing a program, the user must tell the assembler which address space the current portion of the program is using.
The procedure uses segments, which are areas of contiguous addresses.

SASM63K retains the segment type as an attribute of each symbol defined in these address spaces.

The following summarizes the relationship between address space and segment type.

Address Space and Segment Type

Segment Type Address Space

CSEG (CODE segment) CODE address space

DSEG (DATA segment) DATA address space

BSEG (BIT segment) BIT address space

XSEG (XDATA segment) XDATA address space

Chapter 1, Introduction

1-14

Chapter 2

Starting SASM63K
This chapter describes how to start SASM63K.

Chapter 2, Starting SASM63K

2-1

2.1 Starting Methods

There are two methods for starting SASM63K.

Method 1: SASM63K file_name [options]

Method 2: SASM63K

The file_name is the name of the file containing the source program to be assembled.

The options specify listing control of the output file, etc.

The command, file name, and options are delimited by one or more spaces or tabs.

2.1.1 Starting Method 1

Type the following at the operating system prompt.

SASM63K file_name [options]

The assembler loads and immediately starts assembly.

2.1.2 Starting Method 2

Type the following at the operating system prompt.

SASM63K

The assembler loads and displays its command prompt, an asterisk (*), on the console. Type the file name and options at
this prompt.

file_name [options]

After this input, the assembler starts assembly.

Entering a blank response to this prompt displays a usage screen for the assembler. The assembler does not start assembly.

Chapter 2, Starting SASM63K

2-2

2.2 File Specifications

The file specification method described here applies to file specifications on the command line, in include directives, and in
listing directives.

SASM63K allows files to be specified with the hierarchical directory structure supported by the operating system. The
following is the general format for such specifications.

[d:] [] [directory_name] ... [directory_name] file_name [.extension]

The maximum length for a single file specification is 50 characters. All characters beyond this limit are ignored.

The entire file name specification is not necessary; parts may be omitted. Table 2-1 gives the defaults that SASM63K uses
for missing drive names, directories, file names, and extensions.

Table 2-1. File Types and Defaults

Item

File Type Drive Directory File Name Extension

Source file Current drive Current directory No default .ASM

Print file Current drive Current directory Same as source file name .PRN

Error file Current drive Current directory Same as source file name .ERR

.HXH
Object file Current drive Current directory Same as source file name .HXL

.H00 to HFF

Assembly source file Current drive Current directory Same as source file name .SRC

Chapter 2, Starting SASM63K

2-3

For example, if the source file specification is a file name including an extension (Figure 2-1(1)), SASM63K recognizes
that as the file name. If there is no extension (Figure 2-1(2)), SASM63K assumes the extension .ASM. If the file name ends
in a period (Figure 2-1(3)), SASM63K assumes a file name with no extension.

Specification Interpretation

(1) TEXT.SRC → TEXT.SRC

(2) TEXT → TEXT.ASM

(3) TEXT. → TEXT

Figure 2-1 Interpretation of File Specifications

Chapter 2, Starting SASM63K

2-4

2.3 Options

SASM63K offers a variety of command line options for controlling assembler functions. All options start with a slash (/).
This slash is followed by the option name. There must be no space between the slash and the option name. The option name
can be in either upper or lower case. These options allow the input of some of the directives described in Section 4.5
"Listing Control" from the command line. The format differs, but the functions are exactly the same as the corresponding
directives.

Options take precedence over directives. SASM63K does not generate an error message when an option overrides a
directive in the source file.

As many options as needed may be specified in any order. Multiple options must be separated with one or more spaces or
tabs.

Table 2-2 lists the options available for SASM63K. An asterisk in the default column indicates the default used when
neither the option or its corresponding directive appears.

Chapter 2, Starting SASM63K

2-5

Table 2-2 Options

Option Default Corresponding directive Function

/O [(file)] * OBJ Generates object files

/NO NOOBJ Suppresses generation of object files

/PR [(file)] PRN Generates print file

/PR1 [(file)] Generates print file.
See Section 9.2 “Print File”

/NPR * NOPRN Suppresses generation of print file

/S SYM Generates symbol list

/NS * NOSYM Suppresses generation of symbol list

/R REF Cross reference list

/NR * NOREF Suppresses generation of cross reference list

/E [(file)] ERR Redirects error message list to file

/NE * NOERR Directs error message list to screen

/D DEBUG Generates debug information

/ND * NODEBUG Suppresses generation of debug information

/A Generates assembler source file

/NA * Suppresses generation of assembler source file

Chapter 2, Starting SASM63K

2-6

2.4 Exit Codes

SASM63K terminates by returning an exit code, a value indicating the termination state, to the operating system. The
following Table lists the possibilities. An exit code of 0 or 1 indicates that the assembler processed the source file until it
encountered an END directive or an end of file.

Table 2-3 Termination Codes

Termination code Termination state

0 No errors

1 Error(s) in assembly

2 Abort due to fatal error

Chapter 2, Starting SASM63K

2-7

2.5 Examples of Starting SASM63K

This section illustrates the two starting methods described above, taking as an example assembly of the source file
TEXT.ASM.

These examples assemble the source file TEXT.ASM in the directory USR MYDIR, generating listing and error files,
but not generating a cross reference list.

n Example 1 n Starting Method 1

A>SASM63K USR MYDIR TEXT /PR /E /NR
SASM63K Structured Macro Assembler, Ver.1.00
Copyright(c) 1995 Oki Electric Ind.Co.,Ltd., ALL RIGHTS RESERVED

pass1...
pass2...

Errors : 15
Warnings : 2
...Assemble End

n Example 2 n Starting Method 2

A>SASM63K
SASM63K Structured Macro Assembler, Ver.1.00
Copyright(c) 1995 Oki Electric Ind.Co.,Ltd., ALL RIGHTS RESERVED
* USR MYDIR TEXT /PR /E /NR

pass1...
pass2...

Errors : 15
Warnings : 2
...Assemble End

Chapter 2, Starting SASM63K

2-8

Chapter 3

Assembly Language Syntax
This chapter describes the rules of assembly language syntax and the format of source programs.

Chapter 3, Assembly Language Syntax

3-1

3.1 Characters Allowed in Programs

Source programs for SASM63K can use the following characters.

Letters: ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

Digits: 0123456789

Symbols: ! ” # $ % & ’ () * + , - . / : ; < = > ? @ [] ^ ~ |
tab space _ (underscore)

SASM63K accepts lower case letters, but internally converts them to upper case before processing. "TELEX" and "telex,"
for example, refer to the same symbol.

Chapter 3, Assembly Language Syntax

3-2

3.2 Structual Elements of Source Programs

An SASM63K source program is a collection of statements. There are several types of statements, but they all end with a
carriage return. Please note that an end of file (EOF) cannot replace the carriage return. There are also statements that
consist of spaces and tabs plus the carriage return.

The maximum number of characters in a statement is 255, including the carriage return. Be sure not to exceed this limit.

Within a program, spaces and tabs are used to delimit symbols, operators, etc. They have no other special meaning.

The rest of this section describes the individual statement types.

3.2.1 Instruction Statements

SASM63K supports two types of instructions. Instructions found in the CPU's native instruction set are called basic
instructions. Instructions that SASM63K expands to one or more basic instructions during assembly are called SASM
instructions. Any instruction statement can have a label definition at the beginning. For further details, see Section 3.3
"Statement Format for Basic Instructions" and Chapter 5 "SASM Instructions."

3.2.2 Directive Statements

Directive statements give instructions to the assembler itself. Preprocessor instructions are included in this category. For
further details, see Chapter 4 "Directives."

3.2.3 Control Statements

Control statements, or control blocks, control program flow. A control block consists of two or more statements. For details,
see Chapter 7 "Control Statements."

Chapter 3, Assembly Language Syntax

3-3

3.3 Statement Format for Basic Instructions

Basic instruction statements consist of four fields: label definition, instruction, operand(s), and comment. The following
gives the general format.

LABEL: MOV 10H,A ;comment
label definition instruction operands comment

Actual statements do not necessarily need to have all four fields present. The fields can start from any column, but must
appear in the order given.

The rest of this section describes the individual fields.

3.3.1 Label Field

The label field defines a symbol whose value is the current address. A colon (:) must always follow the symbol.

This symbol may be referenced from anywhere in the program.

3.3.2 Instruction and Operand Fields

These fields code the basic instruction. When an operand field follows the instruction field, the two are delimited by spaces
and tabs. A single statement cannot contain more than one instruction.

3.3.3 Comment Field

The comment field begins with a semicolon (;) and ends with the carriage return. The contents of a comment field have no
effect on the assembly results.

Chapter 3, Assembly Language Syntax

3-4

3.4 Symbols

Symbols represent numbers, addresses, instructions, and registers. They are broadly divided into user-defined symbols
defined in the program and reserved word symbols predefined by SASM63K.

3.4.1 Reserved Word Symbols

Reserved word symbols are ones predefined by SASM63K. They include the following categories.

l Instructions

l Directives

l Registers

l Operators

l Device-specific addresses

l Special assembler symbols

l Special directive operands

l Symbols beginning with question marks

These reserved word symbols do not distinguish between upper and lower case. They are available to the user without
having to be defined. They can only be used for their predefined purpose—that is, they cannot be used as labels or be
redefined with directives for defining symbols.

The Appendix lists all reserved words other than those for device-specific addresses.

The rest of this section describes the individual reserved word categories.

3.4.1.1 Instructions

These are the microcontroller instructions recognized by the SASM63K assembler. For functional descriptions of these
instructions, refer to the corresponding manual.

3.4.1.2 Directives

These are the directives for controlling the SASM63K assembler. For functional descriptions, see Chapter 4 "Directives."

Chapter 3, Assembly Language Syntax

3-5

3.4.1.3 Registers

These symbols stand for registers. They are used as operands to microcontroller instructions. They differ from the reserved
words, described below, for indicating register addresses in that they indicate the registers themselves—that is, they do not
have addresses. This category has the following members.

A FLAG HL XY RA
SP PC

3.4.1.4 Operators

These symbols stand for operators. They are used in expressions. For details on function and use, see Section 3.6
"Operators." This category has the following member.

XBANK

3.4.1.5 Device-Specific Addresses

These symbols stand for addresses specific to the target microcontroller. These correspond to the registers in the SFR area
and bits in registers. These reserved words are defined in the DCL files.

The following address symbols are common to all microcontrollers in the OLMS-63K series.

H L X Y RA0
RA1 RA2 RA3 CBR EBR

For other symbols, refer to the DCL file. For a description of the DCL file, refer to the file DCL63K.DOC.

3.4.1.6 Special Instruction Operands

These include the flag names used as instruction operands and addressing specifiers. The latter are specifiers that indicate
the addressing type. For their specific meanings and specification methods, refer to the corresponding manual. This
category has the following members.

C E Z G

Chapter 3, Assembly Language Syntax

3-6

3.4.1.7 Special Directive Operands

These are symbols with special meanings in the context of directive operands. For their meaning and use, see Chapter 4
"Directives." This category has the following members.

BANK ANY

3.4.1.8 Symbols Starting with a Question Mark (?)

These are reserved words because SASM63K uses this type of symbol internally.

3.4.2 User-Defined Symbols

New symbols can be defined in a program as labels or with symbol definition directives. Symbols defined in a program by
the user in this manner are called user-defined symbols. User-defined symbols are given their values when defined.

The following characters can be used in user-defined symbols.

A to Z a to Z 0 to 9 $? _

In order to distinguish user-defined symbols from integer constants, however, the first character cannot be a digit.

There is no restriction on the length of symbols, but only the first 31 characters are valid. All characters past that point are
ignored.

Chapter 3, Assembly Language Syntax

3-7

User-defined symbols are defined as labels or with symbol definition directives. The following Table summarizes the
methods for defining symbols.

Table 3-1 Methods for Defining User Symbols

User-defined symbol Definition methods

User-defined symbol representing a number EQU and SET directives

User-defined symbol representing an address Label, CODE directive, DATA directive,

 BIT directive, XDATA directive

The definition for a user-defined symbol includes a value and, for one representing an address, a segment type. This
segment type is CODE, DATA, BIT, or XDATA depending on the address space the symbol is defined in. User-defined
symbols representing numbers do not have segment types.

Labels are defined as addresses. They must be followed by a colon (:) when defined.

Reserved words cannot be used as user-defined symbols.

Correct examples Incorrect examples

_LOOP: DATA: Same as directive

LOOP_1: 1ABC: First character is digit

$XYZ:

Chapter 3, Assembly Language Syntax

3-8

3.4.3 Location Counter Symbol

SASM63K constantly tracks the address in the segment being assembled. The counter containing this address is called the
location counter. The dollar sign ($) is a special symbol giving the location counter value for the current segment. It is
called the location counter symbol.

n Example n

The following is an example of the use of the location counter symbol.

CSEG
JMP $; Infinite loop

3.4.4 Symbol Scope and Overlapping Definitions

A symbol can normally be defined only once within a single file. The only exceptions are symbols defined and redefined
with the SET directive. A symbol defined with the DEFINE directive can only be redefined if the new definition string
exactly matches the old.

Parameters and local symbols defined within a macro definition are only valid within that macro. Ones defined within
another macro are treated as separate symbols even if they have the same names.

Chapter 3, Assembly Language Syntax

3-9

3.5 Constants

3.5.1 Integer Constants

n Syntax n

ddigits
hdigitsH
odigitsO
odigitsQ
bdigitsB

n Function n

Integer constants are integers within the range expressible with 16 bits. Binary, octal, decimal, and hexadecimal
representations are all supported. The radix is given by a suffix appended to the digits. Integers without a radix suffix are
considered decimal.

hdigits is a string of hexadecimal digits; ddigits, a string of decimal digits; odigits, a string of octal digits; bdigits, a string
of binary digits. To distinguish them from symbols, integer constants must start with a digit between 0 and 9. A
hexadecimal integer starting with a letter (A-F) must therefore be prefixed with a zero.

For enhanced readability, underscores may be inserted anywhere within the string. They cannot, however, be used at the
beginning of the string.

Table 3-2 Radix Specifiers

Radix specifier Permissible characters

Hexadecimal H , h 0123456789ABCDEFabcdef_

Decimal 0123456789_

Octal O , o , Q 01234567_

Binary B , b 01_

Chapter 3, Assembly Language Syntax

3-10

The radix specifier can be upper or lower case. Hexadecimal digits can also be upper or lower case.

n Example n

The decimal number 256 takes the following forms when written as a hexadecimal, octal, and binary number.

Notation

Hexadecimal 100H

Decimal 256

Octal 400O 400Q

Binary 100000000B

Adding zeros to the beginning does not change the meaning of the integer constant. The following notations are all
equivalent to decimal 256.

Notation

Hexadecimal 00100H

Decimal 0256

Octal 000400O 00400Q

Binary 00100000000B

Finally, here are some examples of the same decimal 256 written with underscores.

Notation

Hexadecimal 1_00H 1_0_0H

Binary 1_0000_0000_B

Chapter 3, Assembly Language Syntax

3-11

3.5.2 Character Constants

n Syntax n

'char'

n Function n

A character constant is the 1-byte code for the specified character. char is either a single character, an escape sequence that
evaluates to one, or an empty string. The last evaluates to the byte 0H.

The escape sequence consists of a backslash followed by a character or a number. SASM63K supports the following escape
sequences.

Syntax Function

 nnn nnn is an octal number with up to three digits. The result is the character with this
 octal value. The octal number must be between 0 and 255.

 ch ch is a character. The result is the code for the same character.

n Examples n

The following are examples of character constants. The column on the right gives the character value in hexadecimal
notation.

Character constant Value

' ' 00H

'A' 41H

' 0' 00H

' 47' 27H

' 377' 0FFH

' 8' 38H

' 047' 27H

' F' 46H

' '' 27H

Chapter 3, Assembly Language Syntax

3-12

3.5.3 String Constants

n Syntax n

"characters"

n Function n

A string constant is a string of characters enclosed in double quotation marks ("). characters represents this string. This
string can mix escape sequences and single-byte characters. The maximum string length is 255 characters.

n Examples n

The following are examples of string constants used as operands for the DB directive. The comment fields contain the
hexadecimal codes for the individual bytes.

 DB "STRING" ;53H,54H,52H,49H,4EH,47H

 DB " 377 111 222" ;0FFH,49H,92H

Chapter 3, Assembly Language Syntax

3-13

3.6 Operators

Operands for instructions and directives can use expressions made up of constants, symbols representing addresses, and
numbers joined together with operators. This section describes the function of the operators offered by SASM63K. These
operators include the following.

l Arithmetic operators

l Logical operators

l Bitwise logical operators

l Relational operators

l Dot operator

l Special operator

There are unary and binary operators. A unary operator takes an expression on its right. A binary operator takes an
expression on both sides.

SASM63K expresses numbers internally as 16-bit unsigned integers. All operations are performed as 16-bit unsigned
operations. Note that overflows during operations are ignored.

The following descriptions use expression, expression1, and expression2 to indicate expressions.

Chapter 3, Assembly Language Syntax

3-14

3.6.1 Arithmetic Operators

These operators are for standard arithmetic operations.

Operator Syntax Function

+ expression1 + expression2 Addition

+ expression Unary plus

- expression1 − expression2 Subtraction

− expression Negation (unary operator)

* expression1 * expression2 Multiplication

/ expression1 / expression2 Division

% expression1 % expression2 Modulo arithmetic (the remainder when expression1 is divided by expression2)

n Examples n

The following are some arithmetic expressions and their hexadecimal values.

Arithmetic expression Value
1234H+80H 12B4H
1234H−80H 11B4H
1234H*80H 1A00H
1234H/80H 24H
1234H%80H 34H
+1234H 1234H
−1234H 0EDCCH

Chapter 3, Assembly Language Syntax

3-15

3.6.2 Logical Operators

The logical operators base their results on the true/false values of the expressions to the right and left (or simply to the right
in the case of a unary operator). The result is always either 0 (false) or 1 (true).

Operator Syntax Function

&& expression1 && expression2 Returns 1 if both the left and right terms are nonzero; otherwise returns 0.

|| expression1 || expression2 Returns 0 if both the left and right terms are zero; otherwise returns 1.

! ! expression Returns 1 if the right term is 0; otherwise returns 0.

n Examples n

The following are some logical expressions and their values.

Logical expression Value
5588H&&0H 0
5588H || 0H 1
!5588H 0

3.6.3 Bitwise Logical Operators

Bitwise logical operators operate on each bit of their operands.

Operator Syntax Function

& expression1 & expression2 Logical AND

| expression1 | expression2 Logical OR

^ expression1 ^ expression2 Exclusive OR

<< expression1 << expression2 Shift left term to the left by the number of bits specified by the right term. Zeros
enter from the lowest bit.

>> expression1 >> expression2 Shift left term to the right by the number of bits specified by the right term. Zeros
enter from the highest bit.

~ ~ expression Bit complement of right term.

Chapter 3, Assembly Language Syntax

3-16

n Examples n

The following are some bitwise logical expressions and their values.

Bitwise logical expression Value
1234H&4321H 0220H
1234H | 4321H 5335H
1234H ^ 4321H 5115H
1234H<<1 2468H
1234H>>1 091AH
~1234H 0EDCBH

3.6.4 Relational Operators

Relational operators compare two expressions. They return 1 if the indicated relation is true and 0 otherwise.

Operator Syntax Function

> expression1 > expression2 Returns 1 if expression1 is greater than expression2; otherwise returns 0.

>= expression1 >= expression2 Returns 1 if expression1 is greater than or equal to expression2; otherwise returns 0.

< expression1 < expression2 Returns 1 if expression1 is less than expression2; otherwise returns 0.

<= expression1 <= expression2 Returns 1 if expression1 is less than or equal to expression2; otherwise returns 0.

== expression1 == expression2 Returns 1 if expression1 is equal to expression2; otherwise returns 0.

!= expression1 != expression2 Returns 1 if expression1 is not equal to expression2; otherwise returns 0.

The following are some relational expressions and their values.

Relational expression Value
1234H>1234H 0
1234H>=1234H 1
1234H<1234H 0
1234H<=1234H 1
1234H==1234H 1
1234H!=1234H 0

Chapter 3, Assembly Language Syntax

3-17

3.6.5 Dot Operator

The dot operator produces a bit address from a data address and a bit offset.

Operator Syntax Function

. expression1 . expression2 The value is the result of the following expression.
 ((expression1 << 2) + expression2)

expression1 gives the data address; expression2, the bit offset within that data byte.

SASM63K treats the dot operator as an arithmetic operator, not checking the range of either expression1 or expression2.

n Examples n

The following code fragment gives examples of dot operator usage.

DSEG

ORG 10H

DSYM1:

DS 1

CSEG

BSYM1 BIT DSYM1.0

BSYM2 BIT DSYM1.1

BSET BSYM1

BSET BSYM2

BSET DSYM1.1

3.6.6 Special Operator

This operator, when applied to a symbol, yields the external memory bank in which that symbol is defined. This XBANK
operator can therefore only be applied to symbols with the XDATA segment attribute.

Operator Syntax Function

XBANK XBANKxdata_symbol Yields the external bank number for the symbol
xdata_symbol, a symbol with the XDATA segment
attribute.

Chapter 3, Assembly Language Syntax

3-18

There must be at least one space or tab between the XBANK operator and xdata_symbol.

n Examples n

The following code fragment gives examples of XBANK operator usage.

XSEG

ORG 2:300H

XSYM0:

CSEG

MOV A,#XBANK XSYM0

3.6.7 Operator Precedence

Table 3-2 shows operator precedence. The highest precedence is 1, with progressively lower precedences following in order.
Operators on the same line have the same precedence. Operators are evaluated from highest to lowest precedence.
Operators with the same precedence are evaluated in their order of appearance from the left of the expression—except for
those of precedence level 3, which are evaluated from the right.

Table 3-3 Operator Precedence

Precedence Operator

1 ()

2 . XBANK

3 ! ~ − (unary) + (unary)

4 * / %

5 + −

6 << >>

7 < <= > >=

8 == !=

9 &

10 ^

11 |

12 &&

13 ||

Chapter 3, Assembly Language Syntax

3-19

3.7 Comments

Comments have no effect on programs, so the programmer can freely annotate the program as desired. The format is to
start with a semicolon (;) and to follow that with the comment itself.

n Examples n

MOV A,#2 ;A <- 2

JMP LOOP ;GOTO LOOP

;-------------------------------

;SUB-PROGRAM

;-------------------------------

ORG 100H

The above shows how statements can be coded with comments after instructions and operands or with comments alone. The
characters used are not limited to those described in Section 3.1 "Characters Allowed in Programs."

Chapter 3, Assembly Language Syntax

3-20

3.8 Addressing Modes

This section describes the OLMS-63K series address mode syntax, the contents of such expressions, and limits on their
usage.

This manual does not discuss the details of which instructions can be used with which addressing modes. For such details,
refer to the hardware manual for the particular microcontroller. The discussion that follows makes use of the following
notations.

Symbol Meaning

immediate A nybble-sized immediate value. An expression that evaluates to a value between
−0FH and +0FH.

bit_offset A bit position. An expression that evaluates to a value between 0 and 3.

data_address An expression that yields an address in data memory.

data_bit_address An expression that yields a bit address in data memory.

code_address An expression that yields an address in program memory.

In all addressing modes, the expressions used as instruction operands can make forward references to symbols.

Chapter 3, Assembly Language Syntax

3-21

The addressing modes for the OLMS-63K Series fall into the following categories.

q Immediate addressing
u 4-bit immediate addressing

q Register addressing
u Register direct addressing

q Data memory addressing
n Direct addressing

u 4 kilonybble direct addressing
u SFR bank direct addressing
u Current bank direct addressing

n Register indirect addressing
u HL register indirect addressing
u XY register indirect addressing
u Extra bank HL register indirect addressing
u Extra bank XY register indirect addressing

n Post-increment register indirect addressing
u Post-increment HL register indirect addressing
u Post-increment XY register indirect addressing
u Post-increment extra bank HL register indirect addressing
u Post-increment extra bank XY register indirect addressing

q Program memory addressing
n Direct addressing

u 64 kiloword direct addressing
u 4 kiloword page addressing

n Relative addressing
u PC-relative addressing

n PC-based addressing
u PC-based addressing

n Register indirect addressing
u RA register indirect addressing

q External memory addressing
n Direct addressing

u 64 kilobyte direct addressing
n Register indirect addressing

u RA register indirect addressing

Chapter 3, Assembly Language Syntax

3-22

The following sections discuss the syntax, meaning, and usage of the various addressing modes. The examples use
underlining to indicate the addressing mode under discussion.

3.8.1 Immediate Addressing

3.8.1.1 4-Bit Immediate Addressing

n Syntax n

#immediate

n Function n

The value accessed is that represented by the operand. immediate is an expression representing a value.

SASM63K allows both signed and unsigned forms of immediate addressing. immediate has a value between -0FH and
+0FH.

n Examples n

MOV [HL],#0AH

MOV A,#-2

Chapter 3, Assembly Language Syntax

3-23

3.8.2 Register Addressing

3.8.2.1 Register Direct Addressing

n Syntax n

Word-sized: RA RA register

Byte-sized: HL HL register
XY XY register

Nybble-sized: A Accumulator
H H register
L L register
X X register
Y Y register
RA0 RA0 register
RA1 RA1 register
RA2 RA2 register
RA3 RA3 register
CBR Current bank register
EBR Extra bank register
FLAG Flag register

Bit-sized: G G flag
C Carry flag
Z Zero flag

n Function n

The value accessed is that in the register.

Chapter 3, Assembly Language Syntax

3-24

n Examples n

MOV A,[HL]

MOV H,#2

MOV L,#5

MOV X,#0FH

MOV Y,#0AH

MOV RA0,#0H

MOV RA1,#01H

MOV RA2,#2H

MOV RA3,#5H

MOV CBR,#4

MOV EBR,#5

FCLR FLAG

INCB HL

INCB XY

INCW RA

FSET G

FSET C

FSET Z

3.8.3 Data Memory Addressing

The data memory addressing modes specify the address of a program variable in data memory.

3.8.3.1 4 Kilonybble Direct Addressing

n Syntax n

data_address

n Function n

This mode directly specifies an address in the 4-kilonybble data memory. The value accessed is the contents of that address.
data_address is an expression representing an address in data memory.

n Examples n

MOV 0FFH,A

MOV A,200H

Chapter 3, Assembly Language Syntax

3-25

3.8.3.2 SFR Bank Direct Addressing

n Syntax n

data_address

n Function n

The value accessed is the contents of the specified address in the SFR bank. data_address is an expression representing an
address in the SFR bank. data_address has a value between 0 and 0FFH.

n Examples n

ADD 3FH,A

SUB 20H,A

INC 0AFH

3.8.3.3 Current Bank Direct Addressing

n Syntax n

Nybble-sized: data_address

Bit-sized: data_bit_address

n Function n

The value accessed is the contents of the nybble or bit at the specified address in the current bank. The operand represents
that address. data_address is an expression representing a nybble address in the current bank; data_bit_address, one
representing a bit address in the current bank.

SASM63K determines whether the address refers to a nybble or a bit from the instruction mnemonic.

n Notes n

data_address is an address within the data address space; data_bit_address, one within the bit address space.

The programmer must keep track of whether the address specified by the operand is actually within the currently selected
bank. SASM63K provides the USING BANK directive to check the bank number for current bank direct addressing.

Chapter 3, Assembly Language Syntax

3-26

This form of addressing can also be viewed as using an 8-bit offset (0-0FFH) within the current bank. Although SASM63K
generates the correct code, it considers the address as one in bank 0.

n Examples n

INC 3FFH

MOV 220H,#2

BCLR 200H.2

BSET 20H.5

BTST 4FFH

3.8.3.4 HL Register Indirect Addressing

n Syntax n

Byte-sized: C:[HL]
[HL]

Nybble-sized: C:[HL]
[HL]

Bit-sized: C:[HL].bit_offset
[HL].bit_offset

n Function n

This mode uses the contents of the current bank register (CBR) and the HL register to specify an address in data memory.
The value accessed is the byte, nybble, or bit at the specified address.

n Examples n

MOVHB C:[HL],3FFFH

MOVHB [HL],3FFFH

MOV C:[HL],A

MOV [HL],A

BSET C:[HL].2

BSET [HL].2

Chapter 3, Assembly Language Syntax

3-27

3.8.3.5 XY Register Indirect Addressing

n Syntax n

Byte-sized: C:[XY]
[XY]

Nybble-sized: C:[XY]
[XY]

Bit-sized: C:[XY].bit_offset
[XY].bit_offset

n Function n

This mode uses the contents of the current bank register (CBR) and the XY register to specify an address in data memory.
The value accessed is the byte, nybble, or bit at the specified address.

n Examples n

MOVHB C:[XY],[RA]

MOVHB [XY],[RA]

ADD C:[XY],A

ADD [XY],A

BCLR C:[XY].2

BCLR [XY].2

3.8.3.6 Extra Bank HL Register Indirect Addressing

n Syntax n

Byte-sized: E:[HL]

Nybble-sized: E:[HL]

Bit-sized: E:[HL].bit_offset

n Function n

This mode uses the contents of the extra bank register (EBR) and the HL register to specify an address in data memory. The
value accessed is the byte, nybble, or bit at the specified address.

Chapter 3, Assembly Language Syntax

3-28

n Examples n

MOVHB E:[HL],[RA]

ROL E:[HL]

BTST E:[HL].2

3.8.3.7 Extra Bank XY Register Indirect Addressing

n Syntax n

Byte-sized: E:[XY]

Nybble-sized: E:[XY]

Bit-sized: E:[XY].bit_offset

n Function n

This mode uses the contents of the extra bank register (EBR) and the XY register to specify an address in data memory. The
value accessed is the byte, nybble, or bit at the specified address.

n Examples n

MOVHB E:[XY],[RA]

ROR E:[XY]

BSET E:[XY].0

Chapter 3, Assembly Language Syntax

3-29

3.8.3.8 Post-Increment HL Register Indirect Addressing

n Syntax n

Byte-sized: C:[HL+]
[HL+]

Nybble-sized: C:[HL+]
[HL+]

Bit-sized: C:[HL+].bit_offset
[HL+].bit_offset

n Function n

This mode uses the contents of the current bank register (CBR) and the HL register to specify an address in data memory.
The value accessed is the byte, nybble, or bit at the specified address.

After the access, the HL register is incremented by 2 for byte-sized access or by 1 for nybble- or bit-sized access.

n Examples n

MOVHB C:[HL+],[RA]

MOVHB [HL+],[RA]

ROL C:[HL+]

ROL [HL+]

BTST C:[HL+].2

BTST [HL+].2

Chapter 3, Assembly Language Syntax

3-30

3.8.3.9 Post-Increment XY Register Indirect Addressing

n Syntax n

Byte-sized: C:[XY+]
[XY+]

Nybble-sized: C:[XY+]
[XY+]

Bit-sized: C:[XY+].bit_offset
[XY+].bit_offset

n Function n

This mode uses the contents of the current bank register (CBR) and the XY register to specify an address in data memory.
The value accessed is the byte, nybble, or bit at the specified address.

After the access, the XY register is incremented by 2 for byte-sized access or by 1 for nybble- or bit-sized access.

n Examples n

MOVHB C:[XY+],[RA]

MOVHB [XY+],[RA]

ROL C:[XY+]

ROL [XY+]

BTST C:[XY+].1

BTST [XY+].1

Chapter 3, Assembly Language Syntax

3-31

3.8.3.10 Post-Increment Extra Bank HL Register Indirect Addressing

n Syntax n

Byte-sized: E:[HL+]

Nybble-sized: E:[HL+]

Bit-sized: E:[HL+].bit_offset

n Function n

This mode uses the contents of the extra bank register (EBR) and the HL register to specify an address in data memory. The
value accessed is the byte, nybble, or bit at the specified address.

After the access, the HL register is incremented by 2 for byte-sized access or by 1 for nybble- or bit-sized access.

n Examples n

MOVHB E:[HL+],[RA]

ROR E:[HL+]

BSET E:[HL+].3

Chapter 3, Assembly Language Syntax

3-32

3.8.3.11 Post-Increment Extra Bank XY Register Indirect Addressing

n Syntax n

Byte-sized: E:[XY+]

Nybble-sized: E:[XY+]

Bit-sized: E:[XY+].bit_offset

n Function n

This mode uses the contents of the extra bank register (EBR) and the XY register to specify an address in data memory. The
value accessed is the byte, nybble, or bit at the specified address.

After the access, the XY register is incremented by 2 for byte-sized access or by 1 for nybble- or bit-sized access.

n Examples n

MOVHB E:[XY+],[RA]

ROR E:[XY+]

BSET E:[XY+].3

Chapter 3, Assembly Language Syntax

3-33

3.8.4 Program Memory Addressing

Program memory addressing gives the jump target, call target, or address of data in program memory.

3.8.4.1 64 Kiloword Direct Addressing

3.8.4.1.1 Direct Table Addressing

n Syntax n

code_address

n Function n

The value accessed is the contents of the byte at the specified address in program memory. code_address is an expression
representing an address in program memory.

n Notes n

code_address must be within the addresses available for program memory.

n Examples n

CSEG

 CODE_TABLE:

DW 1020H,3040H,5060H,7080H

.

.

.

MOVHB [HL],CODE_TABLE

MOVLB [XY],CODE_TABLE

Chapter 3, Assembly Language Syntax

3-34

3.8.4.1.2 Direct Code Addressing

n Syntax n

code_address

n Function n

This addressing mode directly specifies the jump target or call target for the LJMP and LCAL instructions. code_address is
an expression representing an address in program memory.

n Notes n

code_address must be within the addresses available for program memory.

n Examples n

LJMP LABEL

.

.

.

LABEL:

.

Chapter 3, Assembly Language Syntax

3-35

3.8.4.2 4 Kiloword Page Addressing

n Syntax n

code_address

n Function n

This addressing mode specifies the jump target or call target for the JMP and CAL instructions. code_address is an
expression representing an address in program memory.

n Notes n

code_address must be within the addresses available for program memory and also within the current 4-kiloword page.

n Examples n

ORG 2000H

LABEL1:

:

JMP LABEL1

JMP LABEL2 ; Error

:

ORG 3000H

:

LABEL2:

Chapter 3, Assembly Language Syntax

3-36

3.8.4.3 PC-Relative Addressing

n Syntax n

code_address

n Function n

This addressing mode specifies the jump target for the SJMP and conditional branch instructions. code_address is an
expression representing an address in program memory.

n Notes n

The difference between the address of the next instruction and code_address must be within the range between -128 and
+127.

n Examples n

SJMP LOOP

BC NEXT

3.8.4.4 PC-Based Addressing

n Syntax n

PC+A

n Function n

This addressing mode specifies the jump target for the JMP instruction using the contents of the program counter and the
accumulator.

n Examples n

JMP PC+A

Chapter 3, Assembly Language Syntax

3-37

3.8.4.5 RA Register Indirect Addressing

n Syntax n

[RA]

n Function n

This addressing mode uses the contents of the RA register to specify an address in program memory. The value accessed is
the contents of that address.

n Examples n

MOVHB C:[HL],[RA]

MOVLB E:[XY],[RA]

3.8.5 External Memory Addressing

The external memory addressing modes are for accessing data in external memory.

3.8.5.1 64 Kilobyte Direct Addressing

n Syntax n

xdata_address

n Function n

This addressing mode directly specifies an address in the external memory space. The value accessed is the byte at that
address. xdata_address is an expression representing an address in external memory.

n Notes n

xdata_address must be within the addresses available for external memory.

Chapter 3, Assembly Language Syntax

3-38

n Examples n

XSEG

XMEM_TABLE:

DB 10H,20H,30H,40H,50H,60H,70H

.

CSEG

.

.

MOVXB [HL],XMEM_TABLE

3.8.5.2 RA Register Indirect Addressing

n Syntax n

[RA]

n Function n

This addressing mode uses the contents of the RA register to specify an address in external memory. The value accessed is
the byte at that address.

n Notes n

Although the syntax is the same as that for RA register indirect addressing of program memory, the value accessed differs.
SASM63K determines whether the address refers to program memory or external memory from the instruction mnemonic.

n Examples n

MOVXB C:[HL],[RA]

MOVXB [RA],[XY]

Chapter 4

Directives
This chapter describes directives. Directives control the assembler, so, except for the DB and DW directives, do not
generate code.

Chapter 4, Directives

4-1

4.1 Symbol Definitions

Symbol definition directives enable the user to define symbols that represent numeric or address values. Defined symbols
can be referenced anywhere in a program.

4.1.1 EQU

n Syntax n

symbol EQU expression
symbol = expression

n Function n

The EQU directive assigns the value of a constant expression to the specified symbol. The expression cannot contain
forward references.

A symbol defined with EQU may not be redefined with the same program as a label or a new symbol. It is not given a
segment type.

The expression must evaluate with the range between 0 and 0FFFFH.

n Examples n

DSEG

ORG 20H

BUF1: DS 10

BUFSIZ EQU 10

Chapter 4, Directives

4-2

4.1.2 SET

n Syntax n

symbol SET expression

n Function n

The SET directive has the same function as the EQU directive except that it permits redefinition of the symbol any number
of times in the program with additional SET directives. It assigns the value of the expression to the specified symbol. The
expression cannot contain forward references.

The symbol is assigned the value of the expression from the current SET directive. Unlike the EQU directive, which only
assigns a single value to a symbol, the SET directive assigns a value that remains valid until changed by the next SET
directive.

n Examples n

.

.

SYMBOL SET 3

MOV A,#SYMBOL

.

.

.

SYMBOL SET 9

MOV A,#SYMBOL

The above code uses the SET directive to define the symbol SYMBOL. In the MOV instruction following the first SET
directive, SYMBOL has the value 3. In the MOV instruction following the second SET directive, however, it has the value
9.

Chapter 4, Directives

4-3

4.1.3 CODE

n Syntax n

symbol CODE expression

n Function n

The CODE directive assigns a code address to the specified symbol. The expression must evaluate to a code address and
cannot contain forward references.

The symbol is assigned the CSEG segment type.

Symbols defined with the CODE directive cannot be redefined.

n Examples n

CODESYM1 CODE 1000H

CODESYM2 CODE 2000H

MOVHB [HL],CODESYM1

MOVLB [XY],CODESYM2

4.1.4 DATA

n Syntax n

symbol DATA expression

n Function n

The DATA directive assigns a RAM data address to the specified symbol. The expression must evaluate to a RAM data
address and cannot contain forward references.

The symbol is assigned the DATA segment type.

Symbols defined with the DATA directive cannot be redefined.

n Examples n

DATASYM1 DATA 200H

DATASYM2 DATA 300H

MOV DATASYM1,A

MOV A,DATASYM2

Chapter 4, Directives

4-4

4.1.5 BIT

n Syntax n

symbol BIT expression

n Function n

The BIT directive assigns a bit address to the specified symbol. The expression must evaluate to a bit address and cannot
contain forward references.

The symbol is assigned the BIT segment type.

Symbols defined with the BIT directive cannot be redefined.

n Examples n

BITSYM1 BIT 200H.1

DSEG

ORG 100H

LABEL: DS 2

BITSYM2 BIT LABEL.2

Chapter 4, Directives

4-5

4.1.6 XDATA

n Syntax n

symbol XDATA xbank_no:expression
symbol XDATA expression

n Function n

The XDATA directive assigns an XDATA address to the specified symbol. The xbank_no expression must evaluate to an
external memory bank number and cannot contain forward references. The address expression must evaluate to an external
memory address and cannot contain forward references.

If only the address expression is present, the assembler uses external memory bank 0.

The symbol is assigned the XDATA segment type.

Symbols defined with the XDATA directive cannot be redefined.

n Examples n

XDATASYM1 XDATA 1:200H

XDATASYM2 XDATA 300H

 .

 .

 .

 MOVXB XDATASYM1,[XY]

 MOVXB [HL],XDATASYM2

Chapter 4, Directives

4-6

4.2 Memory Segment Control

Memory segment control directives define the start of segments (address spaces). There are four segments: CODE, DATA,
BIT, and XDATA.

Each segment has its own location counter. The location counter values have a one-to-one correspondence with addresses in
their respective segments.

The default segment when the assembler starts is CSEG.

4.2.1 CSEG

n Syntax n

CSEG

n Function n

The CSEG directive defines the start of a CODE segment. The assembler starts out in the CODE segment until it sees a
CSEG, DSEG, BSEG, or XSEG directive. When CSEG is first used, the location counter becomes 0. The assembler updates
the location counter with each ORG, DS, or DW directive and with each microcontroller instruction.

Upon the second or subsequent appearance of the CSEG directive, the location counter assumes the value that it had at the
end of the preceding CODE segment.

n Examples n

CSEG

ORG 200H

MOV A,#2

.

.

.

DSEG

Chapter 4, Directives

4-7

4.2.2 DSEG

n Syntax n

DSEG

n Function n

The DSEG directive defines the start of a DATA segment. This segment is for defining symbols in the data address space
and for reserving space for variables. This directive can be used any number of times in a program. The assembler updates
the location counter with each ORG or DS directive. When DSEG is first used, the location counter becomes 0.

Upon the second or subsequent appearance of the DSEG directive, the location counter assumes the value that it had at the
end of the preceding DATA segment.

n Examples n

DSEG

ORG 100H

DATA_SYM:DS 5

CSEG

.

.

.

MOV DATA_SYM,A

4.2.3 BSEG

n Syntax n

BSEG

n Function n

The BSEG directive defines the start of a BIT segment. This segment is for defining symbols in the bit address space and
for reserving space for variables. This directive can be used any number of times in a program. The assembler updates the
location counter with each ORG or DBIT directive. When BSEG is first used, the location counter becomes 0.

Upon the second or subsequent appearance of the BSEG directive, the location counter assumes the value that it had at the
end of the preceding BIT segment.

Chapter 4, Directives

4-8

n Examples n

DSEG

ORG 100H

DATA_SYM:DS 1

BSEG

ORG DATA_SYM.0

BIT_SYM: DBIT 4

4.2.4 XSEG

n Syntax n

XSEG

n Function n

The XSEG directive defines the start of an XDATA segment. This directive can be used any number of times in a program.
The assembler updates the location counter with each ORG, DB, DW, or DS directive. When XSEG is first used, the
location counter becomes 0.

Upon the second or subsequent appearance of the XSEG directive, the location counter assumes the value that it had at the
end of the preceding XDATA segment.

n Examples n

XSEG

ORG 100H

XDATA_TBL0: DB 0H,10H,20H,30H,40H,50H,60H,70H

.

.

.

CSEG

Chapter 4, Directives

4-9

4.3 Location Counter Control

The location counter control directives modify the location counter for the current address space. They include the ORG,
DS, and DBIT directives.

4.3.1 ORG

n Syntax n

ORG address
ORG xbank_no:address (valid only in an XDATA segment)

n Function n

The ORG directive sets the location counter for the current segment to the specified address. This directive can be used in
any segment.

The address expression cannot include forward references. It must evaluate to a valid address within the current address
space.

The xbank_no expression must evaluate to an external memory bank number in the range between 0 and 255. If only the
address expression is present for an XDATA segment, the assembler uses external memory bank 0.

The ORG directive may be used any number of times in a single program, but caution is advised since the assembler does
not check for overlapping segments.

n Examples n

CSEG

ORG 100H

.

.

.

ORG 1:20H ; Error
.

.

.

XSEG

ORG 200H ; External memory bank 0
.

.

.

ORG 1:100H ; External memory bank 1

Chapter 4, Directives

4-10

4.3.2 DS

n Syntax n

[label:] DS size

n Function n

The DS directive reserves a memory area with undefined contents. The size of this area, given by the expression size, is in
words for the CODE segment, in bytes for the XDATA segment, and in nybbles for the DATA segment. The DS directive
simply adds the value of the size expression to the location counter for the current segment. The address restrictions for the
segment cannot, however, be exceeded.

The size expression gives the memory space size in words, bytes, or nybbles. It cannot contain forward references.

The DS directive is used for reserving space in the CODE, DATA, and XDATA segments.

n Examples n

DSEG

ORG 100H

BUFFER: DS 10H ; Reserve 10H nybbles

CSEG

ORG 200H

FUNC1:

MOV CBR,#1

MOV A,BUFFER

The above example reserves a 10H-nybble space in the DATA segment.

Chapter 4, Directives

4-11

4.3.3 DBIT

n Syntax n

[label:] DBIT size

n Function n

The DBIT directive reserves a memory area of the specified size in the BIT segment. Its adds the value of the size
expression to the location counter for the BIT segment.

The size expression gives the memory space size in bits. It cannot contain forward references.

The DBIT directive is used for reserving space in the BIT segment.

n Examples n

BSEG

ORG 100H.0

FLAG1: DBIT 4 ; Reserve 4 bits

CSEG

ORG 300H

FUNC1: MOV CBR,#1

BSET FLAG1

The above example reserves a 4-bit space in the BIT segment.

Chapter 4, Directives

4-12

4.4 Data Definitions

Data definition directives initialize program or external memory to specified values. They are used to define data in
program or external memory.

4.4.1 DB

n Syntax n

[label:] DB expression [, expression]...
[label:] DB string_constant

Function

The DB directive initializes external memory in 1-byte units. It can therefore only be used in the XDATA segment.

As operands, the directive takes either expressions or a string constant.

An expression may contain forward references. It must evaluate to single-byte data—that is, a value within the following
ranges.

−0FFH to −1H (0FF01H to 0FFFFH)
0H to 0FFH

The values from the expressions are assigned to bytes starting at the location counter in the order that the expressions
appear in the list.

n Examples n

XSEG

ORG 10H ;

TABLE1: DB 1,2,3,4,5,6,7,8,9

TABLE2: DB ’A’,’B’,’C’,’D’,’E’,’F’

TABLE3: DB ”string”

Chapter 4, Directives

4-13

4.4.2 DW

n Syntax n

[label:] DW expression [, expression]...

n Function n

The DW directive initializes program or external memory in word units. It can therefore only be used in the CODE and
XDATA segments.

As operands, the directive takes expressions.

An expression may contain forward references. It must evaluate to word (2-byte) data—that is, a value within the following
ranges.

−0FFFFH to −1H (0001H to 0FFFFH)
0H to 0FFFFH

In the CODE segment, the values from the expressions are assigned to words starting at the location counter in the order
that the expressions appear in the list. In the XDATA segment, the values from the expressions are assigned to bytes with
the lower half of the word preceding the upper half starting at the location counter in the order that the expressions appear
in the list.

n Examples n

CSEG

ORG 10H ;
TABLE1: DW 1,2,3 ; Defines words containing 0001H, 0002H, and 0003H.

XSEG

ORG 20H

TABLE2: DW 4,5,6 ; Defines the byte sequence 04H 00H 05H 00H 06H 00H.
DW 1234H ; Defines the byte sequence 34H 12H.

Chapter 4, Directives

4-14

4.5 Listing Control

Listing control directives affect the generation of the listing, object, and error files and the listing file format. They have
absolutely no effect on the code generated as the result of assembly.

4.5.1 DATE

n Syntax n

DATE "character_string"

n Function n

The DATE directive assigns the date to be inserted in the listing file header. In the absence of such a specification, the
assembler uses the date of assembly obtained from the operating system. The character_string may be up to 25 characters
long. Any characters beyond this limit are ignored.

If the file contains more than one DATE directive, only the last one is effective.

n Examples n

DATE "Apr 1, 1995"

Chapter 4, Directives

4-15

4.5.2 TITLE

n Syntax n

TITLE "character_string"

n Function n

The TITLE directive assigns the title to be inserted in the listing file header. In the absence of such a specification, the
assembler leaves the title blank. The character_string may be up to 70 characters long. Any characters beyond this limit are
ignored.

If the file contains more than one TITLE directive, only the last one is effective.

n Examples n

TITLE "Sample Program"

4.5.3 PAGE

n Syntax n

PAGE [page_length, page_width]

n Function n

The PAGE directive specifies a new page in the listing file. The page dimension parameters are provided only for
compatibility with ASM63KN and are ignored by SASM63K.

Chapter 4, Directives

4-16

4.5.4 OBJ/NOOBJ

n Syntax n

OBJ [(object_file)]

NOOBJ

n Function n

The OBJ directive specifies the generation of an object_file with the specified name. In the absence of a name specification,
the assembler uses the default output specification. The assembler ignores any extension in the file name specification
because it generates multiple object files. For the default file name and the default extensions for the resulting files, see
Section 2.2 "File Specifications."

The NOOBJ directive suppresses object file output.

A file may contain multiple OBJ and NOOBJ directives, but only the first one has any effect.

The default directive is OBJ.

n Examples n

OBJ(SAMPLE)

Chapter 4, Directives

4-17

4.5.5 PRN/NOPRN

n Syntax n

PRN [(print_file)]

NOPRN

n Function n

The PRN directive specifies the generation of a listing file with the specified name. For the default file name and the
defaults for omitted portions of the file name, see Section 2.2 "File Specifications."

The NOPRN directive suppresses listing file output.

A file may contain multiple PRN and NOPRN directives, but only the first one has any effect.

The default directive is NOPRN.

n Examples n

PRN(SAMPLE.PRN)

Chapter 4, Directives

4-18

4.5.6 ERR/NOERR

n Syntax n

ERR [(error_file)]

NOERR

n Function n

The ERR directive specifies the output of error messages to an error_file with the specified name. For the default file name
and the defaults for omitted portions of the file name, see Section 2.2 "File Specifications."

The NOERR directive tells SASM63K to send error messages to the standard output (screen).

A file may contain multiple ERR and NOERR directives, but only the first one has any effect.

In the absence of an ERR directive, the error messages go to the screen. The default directive is NOERR.

n Examples n

ERR(SAMPLE.ERR)

Chapter 4, Directives

4-19

4.5.7 SYM/NOSYM

n Syntax n

SYM

NOSYM

n Function n

The SYM directive adds a symbol list to the listing file. This list provides information on user-defined symbols used in the
program.

The NOSYM directive suppresses the output of this list.

A file may contain multiple SYM and NOSYM directives, but only the first one has any effect.

If a NOPRN directive is in effect, the SYM directive is ignored. The default directive is NOSYM.

n Examples n

PRN(SAMPLE.LST)

SYM

Chapter 4, Directives

4-20

4.5.8 REF/NOREF

n Syntax n

REF

NOREF

n Function n

The REF directive adds a cross reference list to the listing file. This list provides information on user-defined symbols and
the line numbers where they are used in the program.

The NOREF directive suppresses the output of this list.

A file may contain multiple REF and NOREF directives, but only the first one has any effect.

If a NOPRN directive is in effect, the REF directive is ignored. The default directive is NOREF.

n Examples n

PRN(SAMPLE.LST)

REF

Chapter 4, Directives

4-21

4.5.9 DEBUG/NODEBUG

n Syntax n

DEBUG

NODEBUG

n Function n

The DEBUG directive adds debugging and symbol information to an object file. For the object file receiving this
information, see Section 6.1.2 "Debugging Information."

The NODEBUG directive suppresses the output of this information.

A file may contain multiple DEBUG and NODEBUG directives, but only the first one has any effect.

If a NOOBJ directive is in effect, the DEBUG directive is ignored. The default directive is NODEBUG.

n Examples n

OBJ(SAMPLE)

DEBUG

Chapter 4, Directives

4-22

4.5.10 LIST/NOLIST

n Syntax n

LIST

NOLIST

n Function n

The LIST directive specifies the output of assembly listing information beginning from the next line in the source code.
Output continues up until the next NOLIST directive.

The NOLIST directive suppresses listing output until the next LIST directive.

SASM63K starts assembling a file with listing output on. In the absence of any LIST and NOLIST directives, it therefore
produces an assembly listing of the entire program.

If a NOPRN directive is in effect, LIST directives are ignored.

n Examples n

PRN

NOLIST ; Assembly listing stops from next line.
.

.

.

LIST ; Assembly listing resumes from next line.
.

.

.

Chapter 4, Directives

4-23

4.6 Checking CBR Bank Number

4.6.1 USING BANK

n Syntax n

USING BANK status

n Function n

The USING BANK directive informs SASM63K of the bank number in the current bank register (CBR).

SASM63K then checks the bank number assumed with the USING BANK directive against the bank number actually
specified for current bank direct addressing and issues a warning if they do not match.

status can be either of the following.

status Description

bank_no Expression giving a bank number

ANY Disables current bank checking. (Default)

bank_no is an expression representing a data memory bank number.

If a bank number is specified, SASM63K checks it against the bank number used in current bank direct addressing. The
ANY specification disables checking. Prior to the first USING BANK directive, the setting is ANY.

n Warning n

The USING BANK directive tells SASM63K to assume that the current bank register contains a specific
value. The assembler does not generate object code for checking this assumption. It is up to the
programmer to provide the microcontroller instructions for setting the hardware.

The scope of a USING BANK directive runs from the next source statement to the next USING BANK
directive. Note that this scope has nothing to do with actual program flow.

Chapter 4, Directives

4-24

n Examples n

DSEG

ORG 200H

DATA2: DS 20H

ORG 300H

DATA3: DS 20H

.

.

.

CSEG

USING BANK 2H ; Assume bank 2 is current bank.
MOV CBR,#(DATA2>>8)&0FH

MOV DATA2,#3 ; No problem.
MOV DATA3,#1 ; Warning generated.
.

.

.

USING BANK 3H ; Assume bank 3 is current bank.
MOV CBR,#(DATA3>>8)&0FH

MOV DATA3,#2 ; No problem.
MOV DATA2,#5 ; Warning generated.
.

.

.

The first USING BANK directive has the operand 2H, so the assembler assumes 2H for the current bank. The next two
MOV instructions use current bank direct addressing for their operands, but DATA3 is in data memory bank 3, so there is a
mismatch. SASM63K therefore flags the second MOV instruction with a warning message.

The second USING BANK directive has the operand 3H, so the assembler assumes 3H for the current bank. The MOV
instruction accessing DATA2 therefore produces a warning message.

Chapter 4, Directives

4-25

4.7 Assembler Control

4.7.1 TYPE

n Syntax n

TYPE (dcl_name)

n Function n

The TYPE directive specifies the DCL file name for the target microcontroller. It causes the assembler to read in a file with
the specified base name and the extension .DCL. The base name of the DCL file for a particular microcontroller is the name
of the microcontroller with the MSM prefix shortened to just M. For the MSM63184 microcontroller, for example, use the
base name M63184 with the TYPE directive.

The assembler reads the DCL file specified by the TYPE directive and sets itself up for the particular device. The TYPE
directive must therefore appear at the start of a program.

dcl_name can contain an explicit path specification. If it does, however, the assembler does not use the PATH environment
variable to search for DCL files.

dcl_name cannot contain an extension. DCL files are limited to the extension .DCL.

The TYPE directive must appear before any instructions and before any of the following directives.

EQU SET CODE DATA XDATA BIT DB DW DS DBIT ORG DEFINE MACRO

If the TYPE directive violates any of the above rules, the assembler aborts.

For details on DCL files, see section 1.3 "DCL Files."

n Examples n

;------------------

; TEST PROGRAM

;------------------

 TYPE (M63XXX)

 CSEG

 .

 .

 .

Chapter 4, Directives

4-26

4.7.2 END

n Syntax n

END

n Function n

The END directive indicates the end of the program. SASM63K assembles everything up to the END directive.

The END directive takes neither a label nor operands.

n Examples n

TYPE (M63XXX)

.

.

.

END

MOV

In the above example, the END directive is followed by a statement with a syntax error. SASM63K does not generate an
error message, however, since it simply ignores the statement.

Chapter 4, Directives

4-27

4.8 Preprocessor Directives

4.8.1 INCLUDE

n Syntax n

INCLUDE (include_file)

n Function n

The assembler replaces the INCLUDE directive with the contents of the specified file.

The contents of include_file are processed just as if they were present in the current file. Files expanded with the INCLUDE
directive may themselves contain INCLUDE directives.

n Examples n

;---------------

; SOURCE FILE

;---------------

INCLUDE (DEFINE.H)

CSEG

.

.

.

;---------------

; INCLUDE FILE DEFINE.H

;---------------

TYPE (M63XXX)

SYM

REF

This example uses an include file to store listing file control directives.

Chapter 4, Directives

4-28

4.8.2 DEFINE

n Syntax n

DEFINE symbol text

n Function n

The DEFINE directive assigns the specified text string to the specified symbol. Whenever the assembler encounters the
symbol in the source program, it replaces the symbol with the text string.

There must be at least one space or tab between the symbol and the text string. Such spaces and tabs are not included in the
text string. The text string may be a string of any characters. It is terminated by a carriage return or a semicolon.

The same symbol cannot appear in more than one DEFINE directive. The only exceptions to this rule are DEFINE
directives containing text strings identical to the original definition.

n Examples n

DEFINE FLAG [30H].0

Chapter 4, Directives

4-29

4.8.3 SUBR

n Syntax n

SUBR symbol [LOCAL([local_label,...])]

.

.

.

ENDSUB

n Function n

The SUBR directive causes the statements between SUBR and ENDSUB to be assembled if the symbol has previously been
referenced. If the symbol has not been referenced, the statements up to the ENDSUB are ignored.

This directive also automatically adds a label definition for the symbol at the start of the statement block.

The statement block between SUBR and ENDSUB can contain local labels. Those labels are declared as a comma-delimited
list in parentheses after the keyword LOCAL. Since each local label name is replaced with a unique name guaranteed not to
overlap other names, different SUBR statement blocks may use the same local labels.

The SUBR directive cannot appear between the SUBR and ENDSUB directives.

For a specific example of the use of the SUBR directive, see Chapter 10 "Sample Program."

Chapter 4, Directives

4-30

n Examples n

 CAL SUB1

SUBR SUB1 LOCAL(LAB1,LAB2)

LAB1:

 [HL]=1

LAB2:

 .

 .

ENDSUB

SUBR SUB2 LOCAL(LAB1)

 [HL]=1

LAB1:

 .

 .

ENDSUB

 CAL SUB2 ; This statement results in an error because the label SUB2 is

; undefined.

In the above example, SUB1 is assembled because it has been previously referenced. SUB2 is not assembled because its
reference follows the definition. Although LAB1 appears to be defined twice, there is no error message because both times
it is declared LOCAL.

Chapter 4, Directives

4-31

4.8.4 REFER

n Syntax n

REFER symbol

n Function n

The REFER directive causes the expansion of the SUBR block for the symbol regardless of whether the symbol has been
referenced. In other words, the symbol appearing in a REFER directive is regarded as a referenced symbol.

n Examples n

REFER SUB2

SUBR SUB2

 [HL]=1

 .

 .

 .

ENDSUB

In the above example, the symbol SUB2 appears in a REFER directive, so the statement block between SUBR and
ENDSUB is assembled.

Chapter 4, Directives

4-32

4.8.5 Macro Definitions

n Syntax n

MACRO symbol([parameter,...]) [LOCAL([local_label,...])]

.

.

.

ENDM

n Function n

A macro assigns a series of statements to a single symbol so that the programmer can then substitute that symbol for that
series of statements. The assembler expands the macro each time that it finds the symbol defined for that macro. A macro
can also have parameters so that different expansions of the macro can result in different text strings. When label
definitions are needed for statements within a macro, these labels must be declared local so that they assume unique names
for each macro expansion.

The macro definition starts with the MACRO directive, the symbol for the macro, and, in parentheses, a comma-delimited
list of parameters for the macro. The parentheses are obligatory even when there are no parameters. The parameters inside
them are symbols. If there are label definitions within the macro, their names appear in a comma-delimited list inside
parentheses after the keyword LOCAL.

Parameter names and local_label names are valid only within the macro definition. They cannot be referenced elsewhere.
As a result, however, parameters and local labels with identical names can be used within other macro definitions.

n Examples n

(1) Example of the simplest type of macro definition

MACRO FCLR_FLAG()

 FCLR C

 FCLR G

 FCLR Z

ENDM

(2) Example of macro with a parameter

MACRO ROLB(adr)

 ROL adr

 ROL adr+1

ENDM

Chapter 4, Directives

4-33

(3) Example of macro with local label

MACRO DECB_HL() LOCAL(label1)

 DEC L

 BNC label1

 DEC H

label1: ; This label is replaced with a unique label for each macro expression.

ENDM

4.8.6 Macro Calls

n Syntax n

macro_name([argument,...])

n Function n

macro_name must be the name of a previously defined macro. If the macro takes arguments, they appear as a comma-
delimited list in parentheses following this name. The parentheses are required even when there are no arguments.

Arguments are arbitrary strings terminated by a comma or a right parenthesis. They replace the corresponding parameters
in the macro definition.

n Examples n

These examples call the macros defined in the preceding section.

(1) FCLR_FLAG()

This call expands to the following instructions.

FCLR C

FCLR G

FCLR Z

Chapter 4, Directives

4-34

(2) ROLB(20H)

The macro definition included the parameter adr, so anywhere that the symbol adr appears in the macro, it is replaced by
the string "20H." The call therefore expands to the following instructions.

ROL 20H

ROL 20H+1

Note: When a right parenthesis, comma or backslash is needed within an argument string, precede it with a backslash .

ROLB((20H+1))

(3) DECB_HL()

The assembler expands this call, giving a new name to the local label label1.

DEC L

BNC ?00001

DEC H

 ?00001:

Chapter 4, Directives

4-35

4.9 Optimized Branch Directives

OLMS-63K provides several jump instructions and subroutine call instructions. If GJMP or GCAL directives are used
instead of directly coding the microcontroller instructions, then SASM63K will convert them to the optimal instructions
corresponding to the address value of the branch destination or distance to the branch destination.

Short branches are ones between -128 and +127 bytes relative to the program counter. Long branches are ones within the
same 4-kiloword page. Far branches can be anywhere in the code memory space.

4.9.1 Optimization of Jump Instructions

n Syntax n

GJMP symbol

n Function n

The GJMP directive produces an unconditional jump.

The operand symbol gives the branch destination. SASM63K converts this directive to the optimal jump variant - short,
long, or far - for the branch destination symbol. For the rules used in making this selection, see Section 4.9.4 "Conversion
Rules." For the variants selected, see Section 4.9.5 "Directive Expansions."

symbol can be either a code segment label or the location counter symbol ($). Expressions are not allowed.

Chapter 4, Directives

4-36

n Examples n

 CSEG

 ORG 200h

LABEL1:

 GJMP LABEL1 ;Converts to SJMP instruction.

 .

 .

 .

 ORG 300H

 GJMP LABEL1 ;Converts to JMP instruction.

 .

 .

 .

 ORG 1000H

 GJMP LABEL1 ;Converts to LJMP instruction.

In the above example, the first GJMP directive is within the range between -128 and+127 bytes of LABEL1, so converts to
an SJMP instruction. The second GJMP directive falls outside this range, but is still within the same 4-kiloword page as
LABEL1, so converts to a JMP instruction. The third GJMP directive falls outside both ranges, so converts to an LJMP
instruction.

Chapter 4, Directives

4-37

4.9.2 Optimization of Conditional Jump Instructions

n Syntax n

GBC symbol
GBLT symbol
GBNC symbol
GBGE symbol
GBLE symbol
GBGT symbol
GBG symbol
GBNG symbol
GBZ symbol
GBEQ symbol
GBNZ symbol
GBNE symbol

n Function n

These directives produce conditional jumps.

The jump conditions are the same as those for the instructions produced by dropping the initial G from the directive names.
For further details on jump conditions, see the Instruction Manual.

The operand symbol gives the branch destination. SASM63K converts this directive to the optimal conditional jump variant
- short, long, or far - for the branch destination symbol. For the rules used in making this selection, see Section 4.9.4
"Conversion Rules." For the variants selected, see Section 4.9.5 "Directive Expansions."

symbol can be either a code segment label or the location counter symbol ($). Expressions are not allowed.

Chapter 4, Directives

4-38

4.9.3 Optimization of Call Instructions

n Syntax n

GCAL symbol

n Function n

The GCAL directive produces a subroutine call.

The operand symbol gives the branch destination. SASM63K converts this directive to the optimal call variant - long or far
- for the branch destination symbol. For the rules used in making this selection, see Section 4.9.4 "Conversion Rules." For
the variants selected, see Section 4.9.5 "Directive Expansions."

symbol must be a code segment label. Expressions are not allowed.

n Examples n

CSEG

ORG 200H

SUB1:

.

.

.

ORG 250H

GCAL SUB1 ;Converts to a CAL instruction.

.

.

.

ORG 1000H

GCAL SUB1 ;Converts to an LCAL instruction.

In the above example, the first GCAL directive is within the same 4-kiloword page as the subroutine entry point, so
converts to a CAL instruction. The second GCAL directive is not within this range, so converts to an LCAL instruction.

Chapter 4, Directives

4-39

4.9.4 Conversion Rules

An optimized branch directive converts to one of up to three different variants.

Short branch
Long branch
Far branch

The following are the conditions that must be met for each variant.

nShort branch

A short branch is one between -128 and +127 bytes relative to the program counter. For a directive to convert to a short
branch, the following conditions must be met.

(1) The branch destination must be within the range between -128 and +127 bytes of the program counter.
(2) There must be no ORG directives between the branching address and the branch destination. In other words, both
 addresses must be within the same contiguous address region.

nLong branch

A long branch is one within the same 4-kiloword page but out of range for a short branch.

nFar branch

A far branch is one that is ineligible for conversion to a short or long branch.

Chapter 4, Directives

4-40

4.9.5 Directive Expansions

The following chart lists the expansions for the optimized branch directives. It uses the symbol dest for the branch
destination and the symbol next for the address following the directive.

Directive Short branch Long branch Far branch

GJMP SJMP dest JMP dest LJMP dest

GCAL - CAL dest LCAL dest

GBC BC dest BNC next BNC next
JMP dest LJMP dest

GBLT BLT dest BGE next BGE next
JMP dest LJMP dest

GBNC BNC dest BC next BC next
JMP dest LJMP dest

GBGE BGE dest BLT next BLT next
JMP dest LJMP dest

GBLE BLE dest BGT next BGT next
JMP dest LJMP dest

GBGT BGT dest BLE next BLE next
JMP dest LJMP dest

GBG BNG next BNG next BNG next
SJMP dest JMP dest LJMP dest

GBNG BNG dest BNG skip BNG skip
SJMP next SJMP next

 skip: skip:
JMP dest LJMP dest

GBZ BZ dest BNZ next BNZ next
JMP dest LJMP dest

GBEQ BEQ dest BNE next BNE next
JMP dest LJMP dest

GBNZ BNZ dest BZ next BZ next
JMP dest LJMP dest

GBNE BNE dest BEQ next BEQ next

JMP dest LJMP dest

Chapter 5

SASM Instructions
This chapter describes SASM instructions. SASM instructions are extended instructions that are more object oriented,
easier to read, and easier to code than device instructions. See Chapter 6 for the details of the individual instructions.

Chapter 5, SASM Instructions

5-1

5.1 SASM Instruction Syntax

SASM instructions are instructions that combine multiple native CPU instructions (hereinafter called basic instructions) to
further enhance the object orientation of data. Coding is similar to high-level languages, so programs are easier to write and
read. SASM instructions have the following statement syntax.

LABEL: C, [HL] += 3
Label definition Option Data object Operator Data object

The statement ends at the carriage return just as regular statements do. Options and label definitions are specified as
necessary.

Chapter 5, SASM Instructions

5-2

5.1.1 Data Objects

Data objects are the operands for calculations. They are either nybbles or bits. The following tables list the data objects of
each type.

n Nybble data objects

Data Object Meaning

[n8] Data nybble at address n8 in SFR area

[n8] Data nybble at address n8 in bank given by current bank register

C:[HL] Data nybble at address in register pair HL in bank given by current bank register

C:[XY] Data nybble at address in register pair XY in bank given by current bank register

E:[HL] Data nybble at address in register pair HL in bank given by extra bank register

E:[XY] Data nybble at address in register pair XY in bank given by extra bank register

C:[HL+] Data nybble at address in register pair HL in bank given by current bank register.
Register pair incremented after access.

C:[XY+] Data nybble at address in register pair XY in bank given by current bank register.
 Register pair incremented after access.

E:[HL+] Data nybble at address in register pair HL in bank given by extra bank register.
Register pair incremented after access.

E:[XY+] Data nybble at address in register pair XY in bank given by extra bank register.
Register pair incremented after access.

n4 Integer constant with value between 0 and 15

Chapter 5, SASM Instructions

5-3

n Bit data objects

Data Object Meaning

[n8].n2 Bit number n2+1 (from the least significant bit) in data nybble at address n8 in SFR area

[n8].n2 Bit number n2+1 (from the least significant bit) in data nybble at address n8 in bank
given by current bank register

C:[HL].n2 Bit number n2+1 (from the least significant bit) in data nybble at address in register
pair HL in bank given by current bank register

C:[XY].n2 Bit number n2+1 (from the least significant bit) in data nybble at address in register
pair XY in bank given by current bank register

E:[HL].n2 Bit number n2+1 (from the least significant bit) in data nybble at address in register
pair HL in bank given by extra bank register

E:[XY].n2 Bit number n2+1 (from the least significant bit) in data nybble at address in register
 pair XY in bank given by extra bank register

C:[HL+].n2 Bit number n2+1 (from the least significant bit) in data nybble at address in register
pair HL in bank given by current bank register. Register pair incremented after access.

C:[XY+].n2 Bit number n2+1 (from the least significant bit) in data nybble at address in register
 pair XY in bank given by current bank register. Register pair incremented after access.

E:[HL+].n2 Bit number n2+1 (from the least significant bit) in data nybble at address in register
 pair HL in bank given by extra bank register. Register pair incremented after access.

E:[XY+].n2 Bit number n2+1 (from the least significant bit) in data nybble at address in register

 pair XY in bank given by extra bank register. Register pair incremented after access.

C: and HL can be omitted, as the following examples show.

n Examples n

[] Same as C:[HL]

E:[] Same as E:[HL]

[XY] Same as C:[XY]

[+] Same as C:[HL+]

[XY+] Same as C:[XY+]

[].2 Same as C:[HL].2

Chapter 5, SASM Instructions

5-4

5.1.2 Operators

This section lists the operators available for calculations with data objects. Some operators require two data objects; others,
only one. When they take two data objects, the sizes of the two must match.

There are sometimes restrictions on the data objects that can be used with operators. For details, see Chapter 6 "SASM
Instruction Details."

n Transfer operators

Operator Syntax Meaning Type

= obj1 = obj2 Assigns contents of obj2 to obj1. Nybble
bit_obj = TRUE Sets bit_obj to 1. Bit
bit_obj = FALSE Clears bit_obj to 0. Bit

<> obj1 <> obj2 Exchanges the contents of obj1 and obj2. Nybble

n Arithmetic operators

Operator Syntax Meaning Type

+= obj1 += obj2 Adds obj1 and obj2 and assigns the result to obj1. Nybble

-= obj1 -= obj2 Subtracts obj2 from obj1 and assigns the result to obj1. Nybble

&= obj1 &= obj2 ANDs obj1 and obj2 and assigns the result to obj1. Nybble

|= obj1 |= obj2 ORs obj1 and obj2 and assigns the result to obj1. Nybble

^= obj1 ^= obj2 XORs obj1 and obj2 and assigns the result to obj1. Nybble

>> obj1 >> obj2 Shifts obj1 right by the value of obj2. Nybble

<< obj1 << obj2 Shifts obj1 left by the value of obj2. Nybble

++ obj1 ++ Increments obj1. Nybble

− − obj1− − Decrements obj1. Nybble

Chapter 5, SASM Instructions

5-5

5.1.3 Options

Options allow finer control of instruction operation. An option is specified before the SASM instruction and is separated
from it by a comma (,).

An instruction can use multiple options, separated by commas. The order is irrelevant. The same option must not appear
more than once.

The following tables describe the available options.

n C (carry) option

Instruction Function

Addition (+=) Perform addition with carry. If the addition generates an overflow, set the carry flag.

Subtraction (-=) Perform subtraction with carry. If the subtraction generates a borrow, set the carry flag.

Right shift (>>) Perform right rotate through carry flag.

Left shift (<<) Perform left rotate through carry flag.

Other No effect.

n D (decimal adjust) option

Instruction Function

Addition (+=) Perform decimal-adjusted addition with carry. If the addition generates an overflow,
 set the carry flag.

Subtraction (-=) Perform decimal-adjusted subtraction with carry. If the subtraction generates a borrow,
 set the carry flag.

Other No effect.

n Examples n

C,[80H]+=[] ; Addition with carry
D,[XY]-=[] ; Decimal-adjusted subtraction with carry

Chapter 5, SASM Instructions

5-6

5.1.4 Limits on Data Objects

There are limits on operator and data object combinations. The tables below list these restrictions on data objects.
Instructions also impose further limits. For complete details, see Chapter 6 "SASM Instruction Details."

n Nybble-sized data objects

[n8], [n8], C:[HL], C:[XY], E:[HL], E:[XY], C:[HL+], C:[XY+], E:[HL+], E:[XY+], n4

obj1 op obj2

Instruction type op obj1 obj2

Transfer = All except n4. All

<> All except n4. All except n4.

Arithmetic += All except n4. All

-= All except n4. All

&= All except n4. All

|= All except n4. All

^= All except n4. All

>> All except n4. n4

<< All except n4. n4

++ All except n4. Not applicable

−− All except n4. Not applicable

n Bit-sized data objects

[n8].n2, [n8].n2, C:[HL].n2, C:[XY].n2, E:[HL].n2, E:[XY].n2, C:[HL+].n2,
C:[XY+].n2, E:[HL+].n2, E:[XY+].n2

obj1 op TRUE

obj1 op FALSE

Instruction type op obj1

Transfer = All

Chapter 5, SASM Instructions

5-7

5.1.5 Special Instructions

The following table lists the SASM instructions, recognized by SASM63K, that do not fit into the categories discussed
above.

Syntax Meaning Type

HL = n8 Assigns n8 to the contents of the HL register pair Byte

XY = n8 Assigns n8 to the contents of the XY register pair Byte

RA = n16 Assigns n16 to the contents of the RA register Word

HL++ Increments the contents of the HL register pair Byte

XY++ Increments the contents of the XY register pair Byte

RA++ Increments the contents of the RA register Word

5.1.6 SASM Instruction Expansion

The operation of SASM instructions is performed by expanding them into their basic instruction equivalents. The
instruction [] = 1, for example, always expands into MOV C:[HL],#1. When a SASM instruction expands into multiple
basic instructions and requires temporary register storage, it uses the A register or the carry flag. The programmer should
always be mindful, therefore, that the use of SASM instructions can alter the contents of A register or the carry flag.

To examine exactly how SASM instructions are expanded, generate an assembly source file by running the assembler with
the /A command line option. Examining this assembly source file also tells how the other flags (Z and G) are modified by
the expansion of SASM instructions.

Chapter 5, SASM Instructions

5-8

Chapter 6

SASM Instruction Details
This chapter describes the SASM instructions in detail. Be sure to read this chapter if you plan to use SASM instructions.

Chapter 6, SASM Instruction Details

6-1

6.1 Nybble Assignments

n Syntax n

obj1 = obj2

n Function n

Assigns contents of obj2 to obj1.

n Data Objects Allowed n

obj1: [n8] [n8] [HL] [XY] E:[HL] E:[XY] [HL+] [XY+] E:[HL+] E:[XY+]
obj2: [n8] [n8] [HL] [XY] E:[HL] E:[XY] [HL+] [XY+] E:[HL+] E:[XY+] n4

n Options n

None

n Flags n

Z Indeterminate.

C No change.

G If a data object uses post-increment addressing, this flag is set to 1 if the corresponding register (HL or XY)
overflows as the result of the increment and is cleared to 0 otherwise. If there is no post-increment addressing,
the flag does not change.

n Examples n

Source Expansion

[] = 1 MOV C:[HL],#01H

[70H] = [XY] MOV A,C:[XY]
MOV 070H,A

[+] = 4 MOV C:[HL+],#04H

Chapter 6, SASM Instruction Details

6-2

6.2 Nybble Exchanges

n Syntax n

obj1 <> obj2

n Function n

Exchanges contents of obj2 and obj1.

n Data Objects Allowed n

obj1: [n8] [n8] [HL] [XY] E:[HL] E:[XY] [HL+] [XY+] E:[HL+] E:[XY+]
obj2: [n8] [n8] [HL] [XY] E:[HL] E:[XY] [HL+] [XY+] E:[HL+] E:[XY+]

n Options n

None

n Flags n

Z Indeterminate.

C No change. G If a data object uses post-increment addressing, this flag is set to 1 if the corresponding register
(HL or XY) overflows as the result of the increment and is cleared to 0 otherwise. If there is no post-increment
addressing, the flag does not change.

n Examples n

Source Expansion

[70H] <> [HL] MOV A,070H
XCH A,C:[HL]
MOV 070H,A

[HL] <> [XY] MOV A,C:[HL]
XCH A,C:[XY]
MOV C:[HL],A

[20H] <> E:[HL+] OR 020H,#0
XCH A,E:[HL+]
XCH A , 020H

Chapter 6, SASM Instruction Details

6-3

6.3 Nybble Additions and Subtractions

n Syntax n

(1) obj1 += obj2

(2) obj1 -= obj2

n Function n

(1) Adds obj1 and obj2 and assigns the result to obj1.
(2) Subtracts obj2 from obj1 and assigns the result to obj1.

n Data Objects Allowed n

obj1: [n8] [n8] [HL] [XY] E:[HL] E:[XY] [HL+] [XY+] E:[HL+] E:[XY+]
obj2: [n8] [n8] [HL] [XY] E:[HL] E:[XY] [HL+] [XY+] E:[HL+] E:[XY+] n4

n Options n

C Perform addition or subtraction with carry. If the result generates an overflow or borrow, set the carry flag.

D Perform addition or subtraction with carry and decimal adjust. If the result generates an overflow or borrow,
set the carry flag.

n Flags n

(1)
Z This flag is set to 1 if the result of the addition is zero and is cleared to 0 otherwise.

C This flag is set to 1 if the result generates an overflow and is cleared to 0 otherwise.

G If a data object uses post-increment addressing, this flag is set to 1 if the corresponding register (HL or XY)
overflows as the result of the increment and is cleared to 0 otherwise. If there is no post-increment addressing,
the flag does not change.

Chapter 6, SASM Instruction Details

6-4

(2)
Z This flag is set to 1 if the result of the subtraction is zero and is cleared to 0 otherwise.

C This flag is set to 1 if the result generates a borrow and is cleared to 0 otherwise.

G If a data object uses post-increment addressing, this flag is set to 1 if the corresponding register (HL or XY)
overflows as the result of the increment and is cleared to 0 otherwise. If there is no post-increment addressing,
the flag does not change.

n Examples n

Source Expansion

[HL] += 4 ADD C:[HL],#04H

C,[XY+] += 3 MOV A,#03H
ADC C:[XY+],A

D, [20H] += E:[XY+] MOV A,E:[XY+]
ADCD 020H,A

E:[XY+] -= 8 SUB E:[XY+],#08H

E:[HL] -= [30H] OR 030H,#0
SUB E:[HL],A

Chapter 6, SASM Instruction Details

6-5

6.4 Nybble Logical Operations

n Syntax n

(1) obj1 &= obj2

(2) obj1 |= obj2

(3) obj1 ^= obj2

n Function n

(1) ANDs obj1 and obj2 and assigns the result to obj1.
(2) ORs obj1 and obj2 and assigns the result to obj1.
(3) XORs obj1 and obj2 and assigns the result to obj1.

n Data Objects Allowed n

obj1: [n8] [n8] [HL] [XY] E:[HL] E:[XY] [HL+] [XY+] E:[HL+] E:[XY+]
obj2: [n8] [n8] [HL] [XY] E:[HL] E:[XY] [HL+] [XY+] E:[HL+] E:[XY+] n4

n Options n

None

n Flags n

Z This flag is set to 1 if the result is zero and is cleared to 0 otherwise.

C No change.

G If a data object uses post-increment addressing, this flag is set to 1 if the corresponding register (HL or XY)
overflows as the result of the increment and is cleared to 0 otherwise. If there is no post-increment addressing,
the flag does not change.

n Examples n

Source Expansion

[HL] &= [20H] OR 020H,#0
AND C:[HL],A

[XY] |= 0AH OR C:[XY],#0AH

[HL+] ^= 3 XOR C:[HL+],#03H

Chapter 6, SASM Instruction Details

6-6

6.5 Nybble Shifts

n Syntax n

(1) obj1 >> obj2

(2) obj1 << obj2

n Function n

(1) Shifts obj1 right by the value of obj2.
(2) Shifts obj1 left by the value of obj2.

n Data Objects Allowed n

obj1: [n8] [n8] [HL] [XY] E:[HL] E:[XY] [HL+] [XY+] E:[HL+] E:[XY+]
obj2: n2

n Options n

C

(1) Rotate through carry: The carry moves into the top bit of obj1, and the bottom bit of obj1 moves into the carry bit.

(2) Rotate through carry: The carry moves into the bottom bit of obj1, and the top bit of obj1 moves into the carry bit.

n Flags n

(1)
Z This flag is set to 1 if the result of the shift is zero and is cleared to 0 otherwise.

C This flag holds the last LSB shifted.

G If a data object uses post-increment addressing, this flag is set to 1 if the corresponding register (HL or XY)
overflows as the result of the increment and is cleared to 0 otherwise. If there is no post-increment addressing,
the flag does not change.

Chapter 6, SASM Instruction Details

6-7

(2)
Z This flag is set to 1 if the result of the shift is zero and is cleared to 0 otherwise.

C This flag holds the last MSB shifted.

G If a data object uses post-increment addressing, this flag is set to 1 if the corresponding register (HL or XY)
overflows as the result of the increment and is cleared to 0 otherwise. If there is no post-increment addressing,
the flag does not change.

n Examples n

Source Expansion

[HL] >> 1 FCLR C
ROR C:[HL]

C,[HL] >> 1 ROR C:[HL]

C,[XY] >> 2 ROR C:[XY]
ROR C:[XY]

[30H] << 2 FCLR C
ROL 030H
FCLR C
ROL 030H

Chapter 6, SASM Instruction Details

6-8

6.6 Nybble Increments and Decrements

n Syntax n

(1) obj1++

(2) obj1--

n Function n

(1) Increments obj1.
(2) Decrements obj1.

n Data Objects Allowed n

obj1: [n8] [n8] [HL] [XY] E:[HL] E:[XY] [HL+] [XY+] E:[HL+] E:[XY+]

n Option n

None

n Flags n

(1)
Z This flag is set to 1 if the result of the increment is zero and is cleared to 0 otherwise.

C This flag is set to 1 if the result generates an overflow and is cleared to 0 otherwise.

G If a data object uses post-increment addressing, this flag is set to 1 if the corresponding register (HL or XY)
overflows as the result of the increment and is cleared to 0 otherwise. If there is no post-increment addressing,
the flag does not change.

(2)
Z This flag is set to 1 if the result of the decrement is zero and is cleared to 0 otherwise.

C This flag is set to 1 if the result generates a borrow and is cleared to 0 otherwise.

G If a data object uses post-increment addressing, this flag is set to 1 if the corresponding register (HL or XY)
overflows as the result of the increment and is cleared to 0 otherwise. If there is no post-increment addressing,
the flag does not change.

Chapter 6, SASM Instruction Details

6-9

n Examples n

Source Expansion

[HL] ++ INC C:[HL]

[70H] ++ INC 070H

[XY] − − DEC C:[XY]

[30H] − − DEC 030H

Chapter 6, SASM Instruction Details

6-10

6.7 Bit Assignments

n Syntax n

obj1 = obj2

n Function n

Assigns contents of obj2 to obj1.

n Data Objects Allowed n

obj1: [n8].n2 [n8].n2 [HL].n2 [XY].n2 E:[HL].n2 E:[XY].n2 [HL+].n2 [XY+].n2
E:[HL+].n2 E:[XY+].n2

obj2: TRUE FALSE

n Options n

None

n Flags n

Z Indeterminate.

C No change.

G If a data object uses post-increment addressing, this flag is set to 1 if the corresponding register (HL or XY)
overflows as the result of the increment and is cleared to 0 otherwise. If there is no post-increment addressing,
the flag does not change.

n Examples n

Source Expansion

[HL].2 = TRUE BSET C:[HL].2

[20H].2 = TRUE MOV A,#(1<<2)
OR 020H,A

E:[XY+].1 = FALSE BCLR E:[XY+].1

Chapter 6, SASM Instruction Details

6-11

6.8 Special Instructions

n Syntax n

(1) HL = n8

(2) XY = n8

(3) RA = n16

(4) HL++

(5) XY++

(6) RA++

n Function n

(1) Assigns n8 to the contents of the HL register pair. n8 is a constant between 0 and 0FFH.
(2) Assigns n8 to the contents of the XY register pair. n8 is a constant between 0 and 0FFH.
(3) Assigns n16 to the contents of the RA register. n16 is a constant between 0 and 0FFFFH.
(4) Increments the contents of the HL register pair.
(5) Increments the contents of the XY register pair.
(6) Increments the contents of the RA register.

n Options n

None

n Flags n

(1) Flags do not change.

(2) Flags do not change.

(3) Flags do not change.

(4)
Z No change.

C No change.

G This flag is set to 1 if the HL register overflows as the result of the increment and is cleared to 0 otherwise.

Chapter 6, SASM Instruction Details

6-12

(5)
Z No change.

C No change.

G This flag is set to 1 if the XY register overflows as the result of the increment and is cleared to 0 otherwise.

(6)
Z No change.

C No change.

G This flag is set to 1 if the RA register overflows as the result of the increment and is cleared to 0 otherwise.

n Examples n

Source Expansion

HL = 5 MOV H,#((05H>>4)&0FH)
MOV L,#(05H&0FH)

XY = 10H MOV H,#((010H>>4)&0FH)
MOV L,#(010H&0FH)

RA = 10FFH MOV RA0,#(010FFH&0FH)
MOV RA1,#((010FFH>>4)&0FH)
MOV RA2,#((010FFH>>8)&0FH)
MOV RA3,#((010FFH>>12)&0FH)

HL ++ INCB HL

XY ++ INCB XY

RA ++ INCW RA

Chapter 7

Control Statements
This chapter describes the control statements available for controlling program flow.

Chapter 7, Control Statements

7-1

7.1 Bit Expressions

Bit expressions are used for determining conditions in flow control statements. They have values of 0 or 1. A flow control
statement's condition is judged true when the bit expression is 1 and false when the bit expression is 0.

Bit expressions cannot stand on their own. They are always used as part of a flow control statement.

7.1.1 Structural Elements of Bit Expressions

The following table summarizes the basic bit expressions.

Syntax Description

obj1 == obj2 1 if obj1 is equal to obj2; 0 otherwise.

obj1 != obj2 1 if obj1 is not equal to obj2; 0 otherwise.

obj1 > obj2 1 if obj1 is greater than obj2; 0 otherwise.

obj1 >= obj2 1 if obj1 is greater than or equal to obj2; 0 otherwise.

obj1 < obj2 1 if obj1 is less than obj2; 0 otherwise.

obj1 <= obj2 1 if obj1 is less than or equal to obj2; 0 otherwise.

bit_obj == TRUE 1 if bit_obj is 1; 0 otherwise.

bit_obj == FALSE 1 if bit_obj is 0; 0 otherwise.

bit_obj != TRUE 1 if bit_obj is not 1; 0 otherwise.

bit_obj != FALSE 1 if bit_obj is not 0; 0 otherwise.

bit_obj 1 if bit_obj is 1; 0 otherwise.

TRUE Always 1.

FALSE Always 0.

obj1 and obj2 are nybble-sized data objects from the list in Section 5.1.1 "Data Objects." They cannot, however, use post-
increment addressing. obj1 cannot be a constant.

bit_obj is a bit-sized data object from the list in Section 5.1.1 "Data Objects" or one of the flags: C (carry flag), Z (zero flag),
or G (G flag). It cannot, however, use post-increment addressing.

Chapter 7, Control Statements

7-2

7.1.2 Operators in Bit Expressions

Combining bit expressions with operators yields another bit expression. The following table lists the operators available for
building bit expressions.

Operator Syntax Description

! !bit_expr1 1 if bit_expr1 is 0; 0 otherwise.

&& bit_expr1 && bit_expr2 1 if both bit_expr1 and bit_expr2 are 1; 0 otherwise.

|| bit_expr1 || bit_expr2 0 if both bit_expr1 and bit_expr2 are 0; 1 otherwise.

When joining bit expressions with the operators in the above table, place parentheses around the component expressions as
leaving off the parentheses sometimes produces syntax errors. Such syntax errors result when the component expression
contains a constant expression.

n Examples n

[]==3 && [xy]==1 This form, without parentheses, produces an error message.

([]==3) && ([xy]==1) The parentheses ensure proper evaluation.

The operators have the following order of precedence.

Precedence Operator

1 ()

2 !

3 &&

4 ||

Chapter 7, Control Statements

7-3

7.2 Control Statement Types

T h e e x p a n s i o n s o f c o n t r o l s t a t e m e n t s a l w a y s i n c l u d e j u m p i n s t r u c t i o n s . C o n t r o l s t a t e m e n t s
therefore offer a choice of four var iants to match the var ie ty of jump ins t ruct ions avai lable : shor t ,
long, far, and optimized.

The fo l l owing t ab l e d e sc r i b e s t h e r e l a t i onsh ip be tween t he f l ow con t ro l s t a t emen t t ype and t he
jump instruction used in the expansion.

Flow control statement type Jump instruction Description

Short SJMP PC-relative jump. The difference between the
 address of the next instruction and the jump target
 must be within the range between -128 and +127.

Long JMP Jump within the same 4-kiloword page.
The branch destination must be within the same
4-kiloword page as the branching address.

Far LJMP Far jump. The jump target can be anywhere in the

program memory.

Optimized SJMP, JMP, or LJMP The assembler automatically selects the optimal
jump variant.

The following flow control statements are available.

IF-ELSE-ELSEIF statement

WHILE statement

REPEAT-UNTIL statement

SWITCH-CASE statement

FOR statement

BREAK statement

CONTINUE statement

Since the BREAK and CONTINUE statements are used within the other flow control statements—that is, they never appear
alone—they take their type from the surrounding flow control statement and do not have different notations for the various
types.

Chapter 7, Control Statements

7-4

7.3 IF-ELSE-ELSEIF Statement

n Syntax n

IF/SIF/LIF/FIF bit_expression

.

.

.

 [ELSEIF bit_expression]

.

.

.

 [ELSE]

.

.

.

ENDI

The Optimized type uses IF; the short type, SIF; the long type, LIF; the far type, FIF.

n Function n

The result of evaluating the bit expression controls which statement block is executed.

ELSEIF and ELSE are optional, but the IF and ENDI must always be present. There can be multiple ELSEIF clauses.

If the bit expression after the IF is true, the statement block executed is the one between the IF and the first ELSEIF (or the
ELSE if there is no ELSEIF). Execution then continues from the statement after the ENDI.

If the bit expression is false, the process is repeated for the bit expressions after each ELSEIF. If one is true, the statement
block following the ELSEIF is executed. If none are true, the statement block following the ELSE is executed.

Chapter 7, Control Statements

7-5

n Example 1 n

IF ([30].1 == TRUE)

[HL] = 3

ENDI

If the second bit from the bottom of the nybble data addressed by [30H] is 1, the statement [HL] = 3 is executed. If the bit
is not 1, however, nothing happens.

n Example 2 n

IF ([HL] != 0) && ([HL] == [XY])

[HL]++

ELSE

[XY]++

ENDI

If [HL] is not zero and [HL] equals [XY], the statement [HL]++ is executed. Otherwise, the statement [XY]++ is executed.

Chapter 7, Control Statements

7-6

7.4 WHILE Statement

n Syntax n

WHILE/SWHILE/LWHILE/FWHILE bit_expression

.

.

.

ENDW

The Optimized type uses WHILE; the short type, SWHILE; the long type, LWHILE; the far type, FWHILE.

n Function n

The WHILE statement causes the statement block between the WHILE and the ENDW to be repeatedly executed while the
bit expression is true. The WHILE statement differs from the REPEAT-UNTIL statement described below in that the
condition is checked before entering the first iteration. If the bit expression is false at the start, therefore, control exits the
WHILE statement block without executing the statements even once.

n Example n

WHILE ([HL]==0)
HL++

ENDW

While [HL] == 0, the HL register is incremented.

Chapter 7, Control Statements

7-7

7.5 REPEAT-UNTIL Statement

n Syntax n

REPEAT/SREPEAT/LREPEAT/FREPEAT

.

.

.

UNTIL bit_expression

The Optimized type uses REPEAT; the short type, SREPEAT; the long type, LREPEAT;the far type, FREPEAT.

n Function n

The REPEAT-UNTIL statement causes the statement block between the REPEAT and the UNTIL to be repeatedly executed
while the bit expression is true. The REPEAT-UNTIL statement differs from the WHILE statement in that the statement
block is executed once before the condition is checked. Even if the bit expression is false at the start, the REPEAT-UNTIL
statement block is executed once.

n Example n

REPEAT

XY++

[HL] += 2

UNTIL ([HL] != [30H])

The statement block between the REPEAT and the UNTIL is executed. It is then repeated until [HL] is equal to [30H].

Chapter 7, Control Statements

7-8

7.6 SWITCH-CASE Statement

n Syntax n

SWITCH/SSWITCH/LSWITCH/FSWITCH obj

CASE constant_expression

.

.

.

 [CASE constant_expression]

.

.

.

 [DEFAULT]

.

.

.

ENDS

obj is one of the following nybble-sized data objects.

[n8] [n8] [HL] [XY] E:[HL] E:[XY]

The Optimized type uses SWITCH; the short type, SSWITCH; the long type, LSWITCH; the far type, FSWITCH.

n Function n

The SWITCH statement passes control to one of the statement blocks depending on the value of obj.

The value of obj is compared with the constant expressions after each CASE. If there is a match, the statements following
that CASE are executed, and control exits the entire SWITCH statement. If there are no matches, the statements after the
DEFAULT are executed instead. If there is no DEFAULT, nothing is executed. Multiple statements can appear after each
CASE. There can also be none.

Chapter 7, Control Statements

7-9

n Example n

SWITCH [30H]

CASE 1

[WORK] = 5

CASE 2

[WORK] = 0AH

CASE 3

[WORK] = 3

DEFAULT

[WORK] = 0

ENDS

The above assigns to [WORK] a value that depends on the value in [30H]. The value assigned is 5 for a value of 1 in
[30H], 0AH for 2, 3 for 3, and 0 otherwise.

Chapter 7, Control Statements

7-10

7.7 FOR Statement

n Syntax n

FOR/SFOR/LFOR/FFOR obj = constant_expression1, constant_expression2

.

.

.

ENDF

obj is one of the following nybble-sized data objects.

[n8] [n8] [HL] [XY] E:[HL] E:[XY]

The Optimized type uses FOR; the short type, SFOR; the long type, LFOR; the far type, FFOR.

n Function n

The FOR statement initializes obj to constant_expression1 and repeatedly executes the statement block between the FOR
and the ENDF, incrementing obj each time, until obj equals constant_expression2. If obj overflows before it reaches the
value constant_expression2, control exits the FOR statement block.

n Example n

FOR [L] = 0, 0FH

[HL] = 0

ENDF

The statement block between the FOR and the ENDF is executed repeatedly for values of [L] from 0 through 0FH.

n Warning n

Using [HL+], [XY+], E:[HL+], or E:[XY+] for obj produces unpredictable results.

Chapter 7, Control Statements

7-11

7.8 BREAK Statement

n Syntax n

BREAK

n Function n

The BREAK statement is used inside SWITCH statement blocks and iteration blocks for the FOR, WHILE, and REPEAT
statements. It causes control to exit the innermost statement block and pass to the statement following the end of the
corresponding statement block.

n Example n

WHILE ([HL+] == 0)

[XY+] = 0

[20H]++

IF ([20H] == 0AH)

BREAK

ENDI

ENDW

When [20H] equals 0AH, control exits the WHILE statement's iteration block, regardless of the truth value of the WHILE
statement's iteration condition.

Chapter 7, Control Statements

7-12

7.9 CONTINUE Statement

n Syntax n

CONTINUE

n Function n

The CONTINUE statement is used inside SWITCH statement blocks and iteration blocks for the FOR, WHILE, and
REPEAT statements. It causes control to pass to the end of the innermost statement block. After execution of the
CONTINUE statement, the iteration condition is checked.

n Example n

WHILE ([20H]!=0AH)

[20H]++

IF ([20H] == 5)

CONTINUE

ENDI

[XY+]=[20H]

ENDW

If [20H] is equal to 5, the statement [XY+] = [20H] is skipped, and control passes to the check of the iteration condition
[20H] != 0AH.

Chapter 8

Error Messages
This chapter describes the SASM63K error messages.

Chapter 8, Error Messages

8-1

8.1 Syntax Errors

Syntax errors detected during analysis of the source file result in the output of error messages to the screen or error file.

The following table lists the error codes, error messages, and their meanings.

 Code Error message

E01 mnemonic not allowed
Instruction mnemonics can only appear in a CODE segment.

E02 bad syntax
This error occurs at the start of analysis. There is no recognizable instruction.

E03 newline in string
A character string contains a newline code (CR-LF).

E04 unexpected EOF
A character constant or character string is missing the closing quotation mark.

E06 operand not allowed
There is an operand in a directive that does not support operands.

E07 xdata segment only
This directive can only appear in an external memory segment.

E09 bad character XX(hex)
The source file contains an illegal character.

E10 bad character in string or character constant. XX(hex)
A string or character constant contains an illegal character.

E11 redefinition XXXXXX
The indicated symbol has been redefined.

E12 undefined XXXXXX
There is no definition for the indicated symbol.

E13 bad operand
There is an error in operand syntax. If the statement is a microcontroller instruction, the cause could be a
mistake in the addressing mode specification or too many or too few operands. If the statement is a directive,
the operands probably do not match the directive syntax.

Chapter 8, Error Messages

8-2

 Code Error message

E14 out of range
The operand value is outside the range allowed.

E15 bad const
There is a mistake in the notation for a constant.

E17 string or character constant. too long
A string or character constant is longer than the specified limit.

E18 divide by zero
The denominator in an expression is zero.

E19 bad location
The location specified is outside the allowed range.

E20 invalid instruction
The program uses an instruction that is not defined with a DCL file #INSTRUCTION statement.

E21 absolute expression required
The operand must be a constant expression.

E22 segment type mismatch
The segment types do not match.

E23 external memory not exist
The target microcontroller does not support external memory.

E24 declaration duplicated
There is more than one TYPE directive.

E27 out of SFR limit
There is a mistake in the SFR address specified in the DCL file. If this message arises with a DCL file
supplied by Oki Electric Industry, there is most likely something wrong with the file. Please report the
problem to us.

E32 cannot use this object
This instruction does not accept this data object.

E33 code segment only
This instruction can only appear in a CODE segment.

Chapter 8, Error Messages

8-3

 Code Error message

E34 missing ENDM
A macro definition is missing the closing ENDM.

E35 name required
A name is required.

E36 missing statement XXXXXX
The indicated statement is missing.

E37 not macro name
This name is not a macro name.

E38 macro definition not found
There is no macro definition for the called macro.

E39 missing)
The statement is missing a closing parenthesis.

E40 parameters mismatch
The macro call has the wrong number of arguments.

Chapter 8, Error Messages

8-4

8.2 Warning Messages

Warning messages are generated for statements that are syntactically correct, but for which the assembly results may not be
reliable. The output format for the listing file, screen, and error file is the same as for syntax errors.

The following table lists the warning codes, warning messages, and their meanings.

 Code Warning message

W01 out of using bank
The operand's bank number does not match that given with the USING BANK directive.

W02 illegal sfr read
The statement contains an invalid access to the SFR area. This warning arises when an instruction attempts to
read from an SFR area that does not allow reads.

W03 illegal sfr write
The statement contains an invalid access to the SFR area. This warning arises when an instruction attempts to
write to an SFR area that does not allow writes.

W04 do not put out code
This SASM instruction does not generate object code.

Chapter 8, Error Messages

8-5

8.3 Fatal Errors

Fatal errors interfere with SASM63K execution. When it detects a fatal error, SASM63K displays the corresponding
message on the screen and aborts execution.

 Code Fatal error message

F01 file not found
The source file was not found.

F02 file can’t create
The assembler was unable to create an output file.

F04 memory is not enough
There is not enough memory to continue processing. One possible cause of this error is that the source
program defines too many symbols. If you have any TSR programs resident, try removing them. If you are
using the /R or /S command line options, try removing them. If the error persists after these measures, the
current version of SASM63K is unable to process your file. Take steps to reduce the number of symbols.

F05 line overflow
The number of source statements exceeds 65,534.

F06 bad syntax in command line
There is an error in the command line options.

F07 DCL file not found
The DCL file was not found.

F08 error(s) found in DCL file
The DCL file contains one or more syntax errors. Since assembler results cannot be guaranteed, the assembler
aborts with this message. This error should not occur if you use the original DCL files supplied by Oki Electric
Industry.

F09 TYPE directive required
The TYPE directive is missing.

Chapter 8, Error Messages

8-6

 Code Fatal error message

F11 too many include or macro nesting levels
The program nests include files or macros too deeply.

F12 I/O error writing file
The source level debug file could not be written to.

F13 file can’t open
The file cannot be open.

F14 file can’t close
The .file cannot be close.

F15 file can’t read
The file cannot be read..

Chapter 9

Output Files
This chapter describes the four types of output files produced by SASM63K: object files, print files, error files, and
assembly source files.

Chapter 9, Output Files

9-1

9.1 Object Files

Object files contain object code and optional debugging information.

The following table list the two different types of object files.

HEX file type Memory space Extensions

Byte-divided HEX files Program memory .HXH and .HXL

Intel HEX format files External memory .H00 to .HFF

The first type of files are Intel HEX format files with Oki extensions. Such extensions are necessary because the 8-bit Intel
HEX format does not support the 16-bit data width of the OLMS-63K Series' program memory. The second type are Intel
HEX format files.

The debugging information is for use with a symbolic debugger running the emulator. It appears at the beginning of the
byte-divided HEX file with the extension .HXH.

If the assembler detects even one syntax error, it generates no object files.

If the microcontroller does not have external memory, the assembler produces no Intel HEX format files.

If the microcontroller has external memory, the assembler always produces an Intel HEX format file with the
extension .H00.

The assembler produces Intel HEX format files with extensions .H01 through .HFF when the source program contains ORG
directives specifying external memory banks. The extension on the Intel HEX format file reflects the bank number specified
with the ORG instruction. If an ORG directive specifies external memory bank 3, for example, the corresponding Intel HEX
format file has the extension .H03.

The following sections describe the formats of these HEX files and the debugging information. They first give the file
structure and then describe the record format. The record descriptions give sample output, divide it into fields, and then
describe the fields.

Chapter 9, Output Files

9-2

9.1.1 Byte-Divided HEX Files

The byte-divided HEX files divide the words containing the object code into separate files containing the high and low
bytes.

l Structure of byte-divided HEX files

l Data records

: 10 0000 00 BEA7BEA811173AFF2F7EA84E92030553 34

 REC TYP DATA CHK SUM
 LOAD ADR
 REC LEN
REC MARK

Field Description

REC MARK Colon character (:)

REC LEN Number of object code bytes stored in the DATA field

LOAD ADR Load address for the first byte of object code in the DATA field

REC TYP Always “00” for a data record

DATA Object code field. The upper byte file (with extension .HXH) contains the upper bytes of
the object code; the lower byte file (with extension .HXL), the lower bytes.

CHK SUM Checksum

Data record

End-of-file record

Repeated

Chapter 9, Output Files

9-3

l End-of-file record

: 00 0000 01 FF

 CHK SUM
 REC TYP

 LOAD ADR
 REC LEN
REC MARK

Field Description

REC MARK Colon character (:)

REC LEN Always “00”

LOAD ADR Always “0000”

REC TYP Always “01” for a end-of-file record

CHK SUM Always “FF”

9.1.2 Debugging Information

Specifying the /D command line option or inserting a DEBUG directive into the source program causes the assembler to
output debugging information to the upper byte member (with extension .HXH) of the two byte-divided HEX files.

Block name record

Debugging symbol record Repeated

End-of-debug
information record

Chapter 9, Output Files

9-4

l Block name record

1 MODULE

BLOCK NAME
REC MARK

Field Description

REC MARK Character “1” for a block name record

BLOCK NAME Symbol giving the module name

l Debug symbol record

0 DEBUGSYM 10H X F

 BANK
 SEG
 VALUE
SYMBOL

REC MARK

Field Description

REC MARK Character “0” for a debugging symbol record

SYMBOL User-defined symbol

VALUE Value for symbol in hexadecimal

SEG Symbol type as determined from how it was defined:
C Symbol allocated in CODE address space
D Symbol allocated in DATA address space
X Symbol allocated in XDATA address space
B Symbol allocated in BIT address space
N Symbol defined with EQU or SET directive

BANK External memory bank number (0-FFH) for symbol. This field only appears when the

 SEG field contains X.

Chapter 9, Output Files

9-5

l End-of-debug information record

 $

Space (20H)

This record indicates the end of the debugging information. It consists solely of a space and a dollar sign (24H).

9.1.3 Intel HEX Format Files

The Intel HEX format files contain external memory initialization data in Intel HEX format.

l Structure of Intel HEX format file

l Data records

: 10 0000 00 BEA7BEA811173AFF2F7EA84E92030553 34

 REC TYP DATA CHK SUM
 LOAD ADR
 REC LEN
REC MARK

Field Description

REC MARK Colon character (:) (3AH)

REC LEN Number of external memory initialization data bytes stored in the DATA field

LOAD ADR Load address for the first byte of initialization data in the DATA field

REC TYP Always “00” for a data record

DATA External memory initialization data

CHK SUM Checksum

Data record

End-of-file record

Repeated

Chapter 9, Output Files

9-6

l End-of-file record

: 00 0000 01 FF

 CHK SUM
 REC TYP

 LOAD ADR
 REC LEN
REC MARK

Field Description

REC MARK Colon character (:) (3AH)

REC LEN Always “00”

LOAD ADR Always “0000”

REC TYP Always “01” for a end-of-file record

CHK SUM Always “FF”

Chapter 9, Output Files

9-7

9.2 Print File

The print file is a sequential file of variable-length records separated by carriage returns. The disk output file has the same
name as the source file, but the extension .PRN.

There are two types of output formats for print file. User chooses one of them by /PR or /PR1 option. When the /PR option is
specified , SASM63K generates a print file which includes the expanded source of SASM instructions, control statements,
Branch directives, DB/DW directives and preprocessor directives. When the /PR1 option is specified , SASM63K generates
a print file which does not include the expanded source.

The following is a sample print file. The numbers down the left side refer to the notes that follow.

Chapter 9, Output Files

9-8

<< SASM63K >> Structured-Macro-Assembler, Ver.2.21
 page : 1
 file : SAMPLE1.ASM
 date : 97 02/19 Wed. [18:40]
 title : Sample program
 Loc Code Line Source statements

 ******************** SAMPLE1.ASM ********************
 1: TYPE (M63184)
 2: TITLE "Sample program"
 3:
 4: INCLUDE (SYMBOL .DEF)
 ******************** SYMBOL.DEF ********************
 1: NOLIST
 ******************** SAMPLE1.ASM ********************
 5:
 0100 6: ORG 100H
 0100 7: START:
 8: HL = 0
 0100 0130 MOV H ,#((00H>>4)&0FH)
 0101 0120 MOV L ,#(00H&0FH)
 9: XY = 0
 0102 0110 MOV X ,#((00H>>4)&0FH)
 0103 0100 MOV Y ,#(00H&0FH)
 10: [CBR] = 2
 0104 0032 MOV CBR ,#02H
 11: USING BANK 2
 12: [200H] = 0FH
 0105 4F00 MOV 0200H ,#0FH
 13:
 14: WHILE ([200H]!=0)
 0106 ?00001:
 0106 A000 CMP 0200H ,#00H
 0107 0C02 BEQ ?00002
 15: [300H]--
 0108 3100 DEC 300H
 SAMPLE1.ASM(15) : Warning : W01 : out of using bank

(1)
(2)
(3)
(4)
(5)
(6)

(7)

(8)

(9)

Chapter 9, Output Files

9-9

The following notes refer to the numbers on the above print file.

(1) The file starts off by giving the assembler version number.

(2) This line gives the page number.

(3) This line gives the source file name.

(4) This line gives the date specified with the DATE directive. If there is no DATE directive, the assembler uses the date
from the operating system.

(5) This line gives the title specified with the TITLE directive.

(6) This line gives the headings for the source code listing. The fields have the following meanings.

Field Meaning

Loc Location counter value as 4-digit hexadecimal number.

Code Object code in hexadecimal. In the CODE segment, this is in (16-bit) words; in the XDATA
segment, it is in bytes.

Statement Assembly language statements: instructions; DB, DW, DS, DBIT, and ORG directives; label
definitions, etc. Constant expressions are shown after evaluation.

Line Source file line number in decimal.

Source Source statement.

(7) These lines give the source file name.

(8) These lines show the expanded source of SASM instruction. When the print file is generated by /PR option or PRN
directive, the expanded source of SASM instructions , control statements, Branch directive, DB/DW directives and
preprocessor directives are output at the field of Source statements. When the print file is generated by /PR1 option, the
expanded source isn’t output.

(9) These lines show the format of error and warning messages.

Chapter 9, Output Files

9-10

9.3 Cross Reference List

The cross reference list gives both symbol information and a reference table. It shows where each symbol is defined and
referenced. Symbols are listed in alphabetical order.

The cross reference list follows the assembly list in the output. Symbols written in lower case in the source program are
converted to upper case for output.

The following is an example of a cross reference list.

(2)
---- cross reference list ----

BIT_SYM0...................... SYMBOL.DEF(2)

 SAMPLE1.ASM(25)

START......................... SAMPLE1.ASM(7)

VAL1.......................... SAMPLE1.ASM(22)

 SAMPLE1.ASM(44)

 SAMPLE1.ASM(57)

VAL2.......................... undefined symbol

 SAMPLE1.ASM(47)

XDATA_SYM0.................... SYMBOL.DEF(3)

 SAMPLE1.ASM(32)

The following table describes the individual fields.

Field Description

(1) Symbol.

(2) File name and line number (decimal) where symbol defined. If the symbol is undefined, the
notation "undefined symbol" appears instead.

(3) File name and line number (decimal) where symbol referenced.

(1)

(3)

Chapter 9, Output Files

9-11

9.4 Symbol List

The symbol list is a listing of the symbol table contents. It provides information about the symbols that appear in the
program.

The symbol list has the following format.

---- symbol information ----

name atr value
BIT_SYM0....................... BIT 07FF

START.......................... CODE 0100

VAL1........................... NUMBER 0001

VAL2........................... UNDEF 0000

XDATA_SYM0..................... XDATA 0010

The following describes the individual fields.

The name field gives the name of the symbol.

The atr field gives the type of the symbol. This type depends on how the symbol was defined.

Type Description

CODE Symbol allocated in CODE space

DATA Symbol allocated in DATA space

BIT Symbol allocated in BIT space

XDATA Symbol allocated in XDATA space

NUMBER Symbol defined with EQU or SET directive

UNDEF Undefined symbol

Chapter 9, Output Files

9-12

9.5 Error File

The error file contains error messages and the statement that generated them. The error message appears before the
corresponding source statement.

For the meanings of the error messages, see Chapter 8 "Error Messages."

The following is an example of error message output.

 (1) (2) (3) (4) (5)

SAMPLE.ASM(24) : Error : E12 : undefined UNDEF_SYM

 DW UNDEF_SYM

(6)

Field Description

(1) Source file name.

(2) Line number of statement generating error.

(3) Error level: Error or warning.

(4) Error code.

(5) Error message. For a listing of error codes and error messages, see Chapter 8 "Error Messages."

(6) Source statement.

Chapter 9, Output Files

9-13

9.6 Assembly Source File

The assembly source file is the SASM63K source file converted to a source file suitable for input to the ASM63KN
assembler.

The assembly source file can be assembled with ASM63KN Ver. 1.01 or higher or by SASM63K itself. When assembling
with SASM63K, makes sure that the output file does not have the same name as the input file.

The following is an example of an assembly source file.

Chapter 9, Output Files

9-14

;<<SASM63K>> Structured-Macro-Assembler, Ver.2.21

;file :SAMPLE2.ASM

 TYPE (M63184)

 TITLE "Sample program"

;SAMPLE1.ASM(3):

;SAMPLE1.ASM(4): INCLUDE (SYMBOL.DEF)

 NOLIST

 BIT_SYM0 BIT 01FFH.3

 XDATA_SYM0 XDATA 10H

 LIST

;SAMPLE1.ASM(5):

;SAMPLE1.ASM(6): DEFINE RESET_DATA 0

;SAMPLE1.ASM(7): MACRO FCLR_FLAG()

;SAMPLE1.ASM(8): FCLR G

;SAMPLE1.ASM(9): FCLR C

;SAMPLE1.ASM(10): FCLR Z

;SAMPLE1.ASM(11): ENDM

;SAMPLE1.ASM(12):

 ORG 100H

START:

;SAMPLE1.ASM(15): HL = 0

 MOV H,#((00H>>4)&0FH)

 MOV L,#(00H&0FH)

;SAMPLE1.ASM(16): XY = 0

 MOV X,#((00H>>4)&0FH)

 MOV Y,#(00H&0FH)

;SAMPLE1.ASM(17):

;SAMPLE1.ASM(18): [CBR] = 2

 MOV CBR,#02H

;SAMPLE1.ASM(19): [200H] = 0FH

 MOV 0200H,#0FH

;SAMPLE1.ASM(20): WHILE([200H] != 0)

?00001:

 CMP 0200H,#00H

 BEQ ?00002

Chapter 10

Sample Program
This chapter describes a sample application program developed with SASM63K.

Chapter 10, Sample Program

10-1

10.1 Sample Program Specifications

This chapter describes an application program for SASM63K. If you use all or part of this sample program, be sure to take
into account other conditions and debug it.

10.1.1 Sample Program Function

The sample program is a timer program that counts from 00:00 to 99:59 in one-second increments.

10.1.2 Program Specifications

The minutes and seconds data are stored in five nybbles in bank 15 of data memory. (See Figure 10-1.) The LCD display
uses LCD driver outputs COM1 to COM8 and SEG0 to SEG19. (See Figure 10-2.)

To count time, the program checks the 2-Hz interrupt request flag in bank 0 of data memory. (See Figure 10-3.) If the flag
is 1, the program increments the half-second count. When this count reaches 2, the program clears it and increments the
seconds count, which is stored as two BCD digits. When the seconds count reaches 60, the program increments the minutes
count, another two BCD digits.

Figure 10-1 Data Storage Area

BANK15

RAM

MIN_DATA

SEC_DATA

_500MS_DATA

0FFH

0F05H

0F03H

0F01H

0F00H

Chapter 10, Sample Program

10-2

Figure 10-2 LCD Driver Outputs for Time Display

Figure 10-3 2-Hz Interrupt Request Flag

SE
G

0

SE
G

1

SE
G

2

SE
G

3

SE
G

4

SE
G

5

SE
G

6

SE
G

7

SE
G

8

SE
G

9

S
E

G
10

S
E

G
11

S
E

G
12

S
E

G
13

S
E

G
14

S
E

G
15

S
E

G
16

S
E

G
17

S
E

G
18

S
E

G
19

COM1

COM2

COM3

COM4

COM5

COM6

COM7

COM8

Minute display Second display

SFR

 Q2Hz

0FFH

59H

00H

BANK0

Chapter 10, Sample Program

10-3

10.2 File Organization

The sample program is contained in the following six files.

1. MAIN.ASM

2. SFRSBL.DEF

3. DATSBL.DEF

4. MACRO.DEF

5. SUB.DEF

6. TABLE.DEF

The last five files are included in the MAIN.ASM file.

Each file is described below.

(1) MAIN.ASM

This contains the core processing routines. It specifies the target device with a TYPE directive, includes the subordinate
files, and provides the main procedure.

Lines 14-41 use a WHILE statement to construct an infinite loop that increments and displays the timer. Lines 42-47 are
the display routine. The main routine is coded using structured programming, an important SASM63K feature.

(2) SFRSBL.DEF

This file defines SFR symbols.

(3) DATSBL.DEF

This file defines data symbols.

(4) MACRO.DEF

This file defines a macro. The user may find it convenient to collect macros in a library. Note how the ability to make labels
local eliminates the worry about defining the same label name twice.

Chapter 10, Sample Program

10-4

(5) SUB.DEF

This file contains subroutines. These subroutines are all defined using the SUB directive, so, if this file is included at the
end of MAIN.ASM, only the subroutines actually referenced will be expanded.

The user may find it convenient to collect subroutines in a library. Note how the ability to make labels local eliminates the
worry about defining the same label name twice.

(6) TABLE.DEF

This file defines table data.

Figure 10-4 Program File Organization

SFRSBL.DEF

DATSBL.DEF

MACRO.DEF

SUB.DEF

TABLE.DEF

DEFINE _Q2HZ
DEFINE _Q4HZ

DSEG
ORG 0F00H

CSEG
MACRO WRITE_F
 RA = FIG_TABLE

SUBR BYTEINC_B
 IF ([] == 9)
 [+] = 0

 ORG 300H
FIG_TABLE:
 DW 00000000
 DW 00000000

MAIN.ASM

INCLUDE (SFRSBL.DEF)

INCLUDE (DATSBL.DEF)

INCLUDE (MACRO.DEF)

INCLUDE (SUB.DEF)

INCLUDE (TABLE.DEF)

END

Chapter 10, Sample Program

10-5

n MAIN.ASM (1)

 1: ;***
 2: ;****** SASM63K Sample Program ******
 3: ;****** for MSM63188 ******
 4: ;****** ******
 5: ;****** Copyright 1995 OKI ELECTRIC INDUSTRY Co.,LTD. ******
 6: ;***
 7: TYPE (M63188)
 8: TITLE "SASM63K Sample Program"
 9: INCLUDE(SFRSBL.DEF)
10: INCLUDE(DATSBL.DEF)
11: INCLUDE(MACRO.DEF)
12: CSEG
13: ORG 0H
14: MAIN:
15: [DSPCNT] = 8
16: [DSPCON0] = 1
17: [CBR] = 15
18: [_500MS_DATA] = 0
19: [SEC_DATA] = 0
20: [SEC_DATA+1] = 0
21: [MIN_DATA] = 0
22: [MIN_DATA+1] = 0
23: CAL DSP_LCD
24: WHILE(TRUE)
25: IF(_Q2HZ)
26: _Q2HZ = FALSE
27: HL = _500MS_DATA & 0FFH
28: [_500MS_DATA] ++
29: IF ([_500MS_DATA] == 2)
30: [_500MS_DATA] = 0H
31: HL = SEC_DATA & 0FFH
32: CAL BYTEINC_BCD
33: IF ([SEC_DATA+1] == 6)
34: [SEC_DATA+1] = 0
35: HL = MIN_DATA & 0FFH
36: CAL BYTEINC_BCD
37: ENDI
38: CAL DSP_LCD
39: ENDI
40: ENDI
41: ENDW

Chapter 10, Sample Program

10-6

n MAIN.ASM (2)

42: DSP_LCD:
43: WRITE_FIG(DSPR0,MIN_DATA+1)
44: WRITE_FIG(DSPR20,MIN_DATA)
45: WRITE_FIG(DSPR40,SEC_DATA+1)
46: WRITE_FIG(DSPR60,SEC_DATA)
47: RT
48:
49: INCLUDE(SUB.DEF)
50: INCLUDE(TABLE.DEF)
51: END

n SFRSBL.DEF

 1: DEFINE _Q2HZ [IRQ4].3
 2: DEFINE _Q4HZ [IRQ4].2
 3: DEFINE _Q16HZ [IRQ4].1
 4: DEFINE _Q32HZ [IRQ4].0
 5: DEFINE _E2HZ [IE4].3
 6: DEFINE _E4HZ [IE4].2
 7: DEFINE _E16HZ [IE4].1
 8: DEFINE _E32HZ [IE4].0
 9: DEFINE DSPR0 100H
10: DEFINE DSPR20 114H
11: DEFINE DSPR40 128H
12: DEFINE DSPR60 13CH

n DATSBL.DEF

 1: DSEG
 2: ORG 0F00H
 3: _500MS_DATA: DS 1
 4: SEC_DATA: DS 2
 5: MIN_DATA: DS 2

Chapter 10, Sample Program

10-7

n MACRO.DEF

 1: CSEG
 2:
 3: MACRO WRITE_FIG(_A,_B)
 4: RA = FIG_TABLE
 5: FOR [X] = 0,4
 6: [RA0] += [_B]
 7: C,[RA1] += 0
 8: ENDF
 9: [CBR] = 1
10: HL = _A & 0FFH
11: FOR [X] = 0,4
12: MOVLB [HL],[RA]
13: HL++
14: HL++
15: HL++
16: HL++
17: RA++
18: ENDF
19: [CBR] = 15
20: ENDM

Chapter 10, Sample Program

10-8

n SUB.DEF

 1: SUBR BYTEINC_BCD
 2: IF ([] == 9)
 3: [+] = 0
 4: IF([] == 9)
 5: [] = 0
 6: ELSE
 7: []++
 8: ENDI
 9: ELSE
10: []++
11: ENDI
12: RT
13: ENDSUB
14:
15: SUBR BYTEDEC_BCD
16: IF ([] == 0)
17: [+] = 9
18: IF ([] == 0)
19: [] = 9
20: ELSE
21: [] --
22: ENDI
23: ELSE
24: [] --
25: ENDI
26: RT
27: ENDSUB

Chapter 10, Sample Program

10-9

n TABLE.DEF (1)

 1: ORG 300H
 2: FIG_TABLE:
 3: ;0
 4: DW 00000000_00111110B
 5: DW 00000000_01010001B
 6: DW 00000000_01001001B
 7: DW 00000000_01000101B
 8: DW 00000000_00111110B
 9: ;1
10: DW 00000000_00000000B
11: DW 00000000_01000010B
12: DW 00000000_01111111B
13: DW 00000000_01000000B
14: DW 00000000_00000000B
15: ;2
16: DW 00000000_01000010B
17: DW 00000000_01100001B
18: DW 00000000_01010001B
19: DW 00000000_01001001B
20: DW 00000000_01000110B
21: ;3
22: DW 00000000_00100001B
23: DW 00000000_01000001B
24: DW 00000000_01000101B
25: DW 00000000_01001011B
26: DW 00000000_00110001B
27: ;4
28: DW 00000000_00011000B
29: DW 00000000_00010100B
30: DW 00000000_00010010B
31: DW 00000000_01111111B
32: DW 00000000_00010000B
33: ;5
34: DW 00000000_00100111B
35: DW 00000000_01000101B
36: DW 00000000_01000101B
37: DW 00000000_01000101B
38: DW 00000000_00111001B

Chapter 10, Sample Program

10-10

n TABLE.DEF (2)

39: ;6
40: DW 00000000_00111100B
41: DW 00000000_01001010B
42: DW 00000000_01001001B
43: DW 00000000_01001001B
44: DW 00000000_00110000B
45: ;7
46: DW 00000000_00000001B
47: DW 00000000_01110001B
48: DW 00000000_00001001B
49: DW 00000000_00000101B
50: DW 00000000_00000011B
51: ;8
52: DW 00000000_00110110B
53: DW 00000000_01001001B
54: DW 00000000_01001001B
55: DW 00000000_01001001B
56: DW 00000000_00110110B
57: ;9
58: DW 00000000_00000110B
59: DW 00000000_01001001B
60: DW 00000000_01001001B
61: DW 00000000_00101001B
62: DW 00000000_00011110B

Appendices
l Reserved Words

Appendices

App.-1

Reserved Words

A.1 Basic Instructions

ADC ADCD ADCJ ADD AND BC BCLR
BEQ BGE BGT BLE BLT BMOV BNC
BNE BNG BNOT BNZ BSET BTST BZ
CAL CMP DEC DI EI FCLR FSET
HALT INC INCB INCW JMP LCAL LJMP
MCLR MMOV MNOT MOV MOVHB MOVLB MOVXB
MSA MSET MTST NOP OR POP PUSH
ROL ROR RT RTI RTNMI SBC SBCD
SBCJ SJMP SUB XCH XOR

A.2 Directives

ANY BIT BSEG BANK CODE CSEG DATA
DATE DB DBIT DEBUG DEFINE DS DSEG
DW END ENDM ENDSUB EQU ERR INCLUDE
LINE LIST LOCAL MACRO NODEBUG NOERR NOLIST
NOOBJ NOPRN NOREF NOSYM OBJ ORG PAGE
PRN REF REFER SET SUBR SYM TITLE
TYPE USING XDATA XSEG

A.3 Registers

A C E FLAG G HL PC
RA XY Z

A.4 Operators

XBANK

Appendices

App.-2

A.5 Control Statements

BREAK CASE CONTINUE DEFAULT ELSE ELSEIF
ENDF ENDI ENDS ENDW FFOR FIF
FOR FREPEAT FSWITCH FWHILE IF LFOR
LIF LREPEAT LSWITCH LWHILE REPEAT SFOR
SIF SREPEAT SWHILE SSWITCH SWITCH UNTIL
WHILE

A.6 Data Objects

TRUE FALSE

A.7 SASM Instruction Options

D

A.8 Addresses

The reserved words used for addresses are defined in the DCL file.

	Cover
	Notice
	Preface
	Table of Contents
	Chapter 1 Introduction
	1.1 Functional Overview
	1.2 Sample Program
	1.3 DCL Files
	1.3.1 File Name
	1.3.2 DCL File Search
	1.3.3 DCL File Contents
	1.3.4 DCL63K.DOC
	1.3.5 Error Processing

	1.4 OLMS-63K Series Memory Spaces
	1.4.1 Program Memory
	1.4.2 Data Memory
	1.4.3 External Memory
	1.4.4 Expanding External Memory

	1.5 Address Spaces and Segments

	Chapter 2 Starting SASM63K
	2.1 Starting Methods
	2.1.1 Starting Method 1
	2.1.2 Starting Method 2

	2.2 File Specifications
	2.3 Options
	2.4 Exit Codes
	2.5 Examples of Starting SASM63K

	Chapter 3 Asssembly Language Syntax
	3.1 Characters Allowed in Programs
	3.2 Structual Elements of Source Programs
	3.2.1 Instruction Statements
	3.2.2 Directive Statements
	3.2.3 Control Statements

	3.3 Statement Format for Basic Instructions
	3.3.1 Label Field
	3.3.2 Instruction and Operand Fields
	3.3.3 Comment Field

	3.4 Symbols
	3.4.1 Reserved Word Symbols
	3.4.1.1 Instructions
	3.4.1.2 Directives
	3.4.1.3 Registers
	3.4.1.4 Operators
	3.4.1.5 Device-Specific Addresses
	3.4.1.6 Special Instruction Operands
	3.4.1.7 Special Directive Operands
	3.4.1.8 Symbols Starting with a Question Mark (?)

	3.4.2 User-Defined Symbols
	3.4.3 Location Counter Symbol
	3.4.4 Symbol Scope and Overlapping Definitions

	3.5 Constants
	3.5.1 Integer Constants
	3.5.2 Character Constants
	3.5.3 String Constants

	3.6 Operators
	3.6.1 Arithmetic Operators
	3.6.2 Logical Operators
	3.6.3 Bitwise Logical Operators
	3.6.4 Relational Operators
	3.6.5 Dot Operator
	3.6.6 Special Operator
	3.6.7 Operator Precedence

	3.7 Comments
	3.8 Addressing Modes
	3.8.1 Immediate Addressing
	3.8.1.1 4-Bit Immediate Addressing

	3.8.2 Register Addressing
	3.8.2.1 Register Direct Addressing

	3.8.3 Data Memory Addressing
	3.8.3.1 4 Kilonybble Direct Addressing
	3.8.3.2 SFR Bank Direct Addressing
	3.8.3.3 Current Bank Direct Addressing
	3.8.3.4 HL Register Indirect Addressing
	3.8.3.5 XY Register Indirect Addressing
	3.8.3.6 Extra Bank HL Register Indirect Addressing
	3.8.3.7 Extra Bank XY Register Indirect Addressing
	3.8.3.8 Post-Increment HL Register Indirect Addressing
	3.8.3.9 Post-Increment XY Register Indirect Addressing
	3.8.3.10 Post-Increment Extra Bank HL Register Indirect Addressing
	3.8.3.11 Post-Increment Extra Bank XY Register Indirect Addressing

	3.8.4 Program Memory Addressing
	3.8.4.1 64 Kiloword Direct Addressing
	3.8.4.1.1 Direct Table Addressing
	3.8.4.1.2 Direct Code Addressing

	3.8.4.2 4 Kiloword Page Addressing
	3.8.4.3 PC-Relative Addressing
	3.8.4.4 PC-Based Addressing
	3.8.4.5 RA Register Indirect Addressing

	3.8.5 External Memory Addressing
	3.8.5.1 64 Kilobyte Direct Addressing
	3.8.5.2 RA Register Indirect Addressing

	Chapter 4 Directives
	4.1 Symbol Definitions
	4.1.1 EQU
	4.1.2 SET
	4.1.3 CODE
	4.1.4 DATA
	4.1.5 BIT
	4.1.6 XDATA

	4.2 Memory Segment Control
	4.2.1 CSEG
	4.2.2 DSEG
	4.2.3 BSEG
	4.2.4 XSEG

	4.3 Location Counter Control
	4.3.1 ORG
	4.3.2 DS
	4.3.3 DBIT

	4.4 Data Definitions
	4.4.1 DB
	4.4.2 DW

	4.5 Listing Control
	4.5.1 DATE
	4.5.2 TITLE
	4.5.3 PAGE
	4.5.4 OBJ/NOOBJ
	4.5.5 PRN/NOPRN
	4.5.6 ERR/NOERR
	4.5.7 SYM/NOSYM
	4.5.8 REF/NOREF
	4.5.9 DEBUG/NODEBUG
	4.5.10 LIST/NOLIST

	4.6 Checking CBR Bank Number
	4.6.1 USING BANK

	4.7 Assembler Control
	4.7.1 TYPE
	4.7.2 END

	4.8 Preprocessor Directives
	4.8.1 INCLUDE
	4.8.2 DEFINE
	4.8.3 SUBR
	4.8.4 REFER
	4.8.5 Macro Definitions
	4.8.6 Macro Calls

	4.9 Optimized Branch Directives
	4.9.1 Optimization of Jump Instructions
	4.9.2 Optimization of Conditional Jump Instructions
	4.9.3 Optimization of Call Instructions
	4.9.4 Conversion Rules
	4.9.5 Directive Expansions

	Chapter 5 SASM Instructions
	5.1 SASM Instruction Syntax
	5.1.1 Data Objects
	5.1.2 Operators
	5.1.3 Options
	5.1.4 Limits on Data Objects
	5.1.5 Special Instructions
	5.1.6 SASM Instruction Expansion

	Chapter 6 SASM Instruction Details
	6.1 Nybble Assignments
	6.2 Nybble Exchanges
	6.3 Nybble Additions and Subtractions
	6.4 Nybble Logical Operations
	6.5 Nybble Shifts
	6.6 Nybble Increments and Decrements
	6.7 Bit Assignments
	6.8 Special Instructions

	Chapter 7 Control Statements
	7.1 Bit Expressions
	7.1.1 Structural Elements of Bit Expressions
	7.1.2 Operators in Bit Expressions

	7.2 Control Statement Types
	7.3 IF-ELSE-ELSEIF Statement
	7.4 WHILE Statement
	7.5 REPEAT-UNTIL Statement
	7.6 SWITCH-CASE Statement
	7.7 FOR Statement
	7.8 BREAK Statement
	7.9 CONTINUE Statement

	Chapter 8 Error Messages
	8.1 Syntax Errors
	8.2 Warning Messages
	8.3 Fatal Errors

	Chapter 9 Output Files
	9.1 Object Files
	9.1.1 Byte-Divided HEX Files
	9.1.2 Debugging Information
	9.1.3 Intel HEX Format Files

	9.2 Print File
	9.3 Cross Reference List
	9.4 Symbol List
	9.5 Error File
	9.6 Assembly Source File

	Chapter 10 Sample Program
	10.1 Sample Program Specifications
	10.1.1 Sample Program Function
	10.1.2 Program Specifications

	10.2 File Organization

	Appendices
	A.1 Basic Instructions
	A.2 Directives
	A.3 Registers
	A.4 Operators
	A.5 Control Statements
	A.6 Data Objects
	A.7 SASM Instruction Options
	A.8 Addresses

