TGS 2444 - for the detection of Ammonia ### Features: - * Low power consumption - * High sensitivity/selectivity to ammonia (NH3) - * Miniature size ## **Applications**: - * Ammonia leak detection in refrigerators - * Ventilation control for agricultural and poultry industries **TGS 2444** utilizes a multilayer sensor structure. A glass layer for thermal insulation is printed between a ruthenium oxide (RuO₂) heater and an alumina substrate. A pair of Au electrodes for the heater are formed on a thermal insulator. The gas sensing layer, which is formed of tin dioxide (SnO₂), is printed on an electrical insulation layer which covers the heater. A pair of Au electrodes for measuring sensor resistance are formed on the electrical insulator. **TGS 2444** displays good selectivity to ammonia, making it ideal for critical safety-related applications such as the detection of ammonia leaks in refrigeration systems and ammonia detection in the agricultural field. In the presence of ammonia, the sensor's conductivity increases depending on the gas concentration in the air. A simple pulsed electrical circuit operating on a 250msec circuit voltage cycle can convert the change in conductivity to an output signal which corresponds to gas concentration. The figure below represents typical sensitivity characteristics, all data having been gathered at standard test conditions (see reverse side of this sheet). The Y-axis is indicated as sensor resistance of displayed gases at various concentrations: The figure below represents the typical response pattern of TGS2444 when the atmosphere changes from clean air to the listed gas concentrations and then reverts back to clean air: #### **Sensitivity Characteristics:** #### **Sensor Response Pattern:** IMPORTANT NOTE: OPERATING CONDITIONS IN WHICH FIGARO SENSORS ARE USED WILL VARY WITH EACH CUSTOMER'S SPECIFIC APPLICATIONS. FIGARO STRONGLY RECOMMENDS CONSULTING OUR TECHNICAL STAFF BEFORE DEPLOYING FIGARO SENSORS IN YOUR APPLICATION AND, IN PARTICULAR, WHEN CUSTOMER'S TARGET GASES ARE NOT LISTED HEREIN. FIGARO CANNOT ASSUME ANY RESPONSIBILITY FOR ANY USE OF ITS SENSORS IN A PRODUCT OR APPLICATION FOR WHICH SENSOR HAS NOT BEEN SUBSTARTING THE STATE OF #### **Basic Measuring Circuit:** Circuit voltage (Vc) is applied across the sensing element which has a resistance (Rs) between the sensor's two electrodes (pins No. 2 and No. 3) and a load resistor (RL) connected in series. The sensing element is heated by the heater which is connected to pins No. 1 and No. 4. Heating cycle--The sensor requires application of a 250 msec heating cycle which is used in connection with a circuit voltage cycle of 250 msec. Each VH cycle is comprised by 4.8V being applied to the heater for the first 14ms, followed by 0V pulse for the remaining 236ms. The Vc cycle consists of 0V applied for 2msec, followed by 5.0V for 5ms and 0V for 243msec. For achieving optimal sensing characteristics, the sensor's signal should be measured after the midpoint of the 5ms Vc pulse of 5.0V (for reference, see timing chart below). **NOTE:** Application of a Vc pulse condition is required to prevent possible migration of heater materials into the sensing element material. Under extreme conditions of high humidity and temperature, a constant Vc condition could result in such migration and cause long term drift of Rs to higher values. A 5ms Vc pulse results in significantly less driving force for migration than a constant Vc condition, rendering the possibility of migration negligibly small. #### **Specifications:** | Model number | | | TGS2444 | | |---|---|----|---|-------------| | Sensing element type | | | M1 | | | Standard package | | | TO-5 metal can | | | Target gases | | | Ammonia | | | Typical detection range | | | 10 ~ 100ppm | | | Standard circuit conditions | Heater voltage cycle | Vн | V _{HH} =4.8V±0.2VDC for 14ms
V _{HL} =0V for 236ms | | | | Circuit voltage cycle | Vc | Vc =0 V for 245ms Vc =5.0 $V\pm0.2VDC$ for 5m (see timing chart for measurement timing) | | | | Load resistance | R∟ | variable | R∟≥8kΩ | | Electrical characteristics under standard test conditions | Heater resistance | Rн | 17±2.5Ω at room temp. | | | | Heater current | Ін | approx. 203mA (in case of Vнн) | | | | Heater power consumption | Рн | 56mW (typical) | | | | Sensor resistance | Rs | $2.2k\Omega\sim44.6k\Omega$ in 10ppm of ammonia | | | | Sensitivity (change ratio of Rs) | β | Rs(NH3 100ppm)
Rs(NH3 10ppm) | 0.06 ~ 0.63 | | Standard test conditions | Test gas conditions | | Ammonia in air
at 20±2°C, 65±5%RH | | | | Circuit conditions | | Same as Std Circuit Condition (above) | | | | Conditioning period before test | | ≥48 hours | | | Operating conditions | -10°C~+50°C w/o dew condensation
Less than absolute humidity corresponds to 40°C/80%RH | | | | | Storage conditions | -20°C~+60°C w/o dew condensation
Less than absolute humidity corresponds to 60°C/90%RH | | | | Sensor resistance (Rs) is calculated with a measured value of Vout as follows: $$Rs = \frac{Vc \times RL}{Vout} - RL$$ For information on warranty, please refer to Standard Terms and Conditions of Sale of Figaro #### **Structure and Dimensions:** Pin connections: - 1: Heater - 2: Sensor (-) - 3: Sensor (+) - 4: Heater FIGARO ENGINEERING INC. 1-5-11 Senba-nishi Mino, Osaka 562 **JAPAN** (81)-72-728-2561 Phone: (81)-72-728-0467 Fax: www.figaro.co.jp email: figaro@figaro.co.jp REV: 1190NSTAR自动化 http://www.sensor-ic.com/ TEL: 0755-83376489 FAX:0755-83376182 E-MAIL:szss20@163.com