
# C30645 and C30662 Series

Large Area InGaAs Avalanche Photodiodes for 1550 nm eye-safe laser range finding applications



## **Overview**

The C30645 and C30662 Series APDs are high speed, large area InGaAs/InP avalanche photodiodes. These devices provide large quantum efficiency. (Q.E.), high responsivity and low noise in the spectral range between 1100 nm and 1700 nm. They are optimized for use at a wavelength of 1550 nm, suitable for use in eye-safe laser range finding systems.

These APDs are supplied in a hermetically sealed TO-18 package or on a ceramic carrier. Custom packaging is also available. Please contact Excelitas to discuss the packaging in further detail. Excelitas Technologies is committed to supplying the highest quality product to our customers.

We are certified to meet ISO-9001 and we are designed to meet MIL-STD-883 and/or MIL-STD-750 specifications.

All devices undergo extended burn-in and periodic process qualification programs to assure high reliability.

#### **Features and Benefits**

- Spectral response 1100 to 1700 nm
  - High responsivity
- Low dark current and noise
- Large area
- RoHS-compliant

### **Applications**

- OTDR
- Eye-safe laser range finding systems

|                                                                    | C30645 |      |      | C30662 |      |      | C30662-1 |     |     |            | Conditions                           |
|--------------------------------------------------------------------|--------|------|------|--------|------|------|----------|-----|-----|------------|--------------------------------------|
| Parameter                                                          | Min    | Тур  | Max  | Min    | Тур  | Max  | Min      | Тур | Max | Units      |                                      |
| Active Diameter                                                    |        | 80   |      |        | 200  |      |          | 200 |     | μm         |                                      |
| Breakdown voltage (V <sub>BR</sub> )                               | 45     | 75   | 95   | 45     | 75   | 95   | 45       | 75  | 95  | V          |                                      |
| Operation Point from Breakdown (V <sub>BR</sub> -V <sub>op</sub> ) |        |      |      |        |      |      | 4.0      |     |     | V          | At gain of 10 (M=10)<br>(See Note 6) |
| Temperature Coefficient of V <sub>r</sub> for Constant Gain        |        | 0.14 | 0.20 |        | 0.14 | 0.20 |          |     |     | V / deg C  |                                      |
| Responsivity (@ 1550 nm)                                           | 9.3    |      |      | 9.3    |      |      |          |     |     | A/W        |                                      |
| Dark Current (@ M=10)                                              |        |      | 50   |        |      | 150  |          |     |     | nA         |                                      |
| Spectral Noise Current (@ M=10)                                    |        |      | 1.0  |        |      | 1.5  |          |     |     | pA/rt (Hz) |                                      |
| Capacitance                                                        |        | 1.25 |      |        | 2.5  |      |          |     |     | pF         |                                      |
| Bandwidth (@ M=10)                                                 | 1000   |      |      | 600    | 850  |      |          |     |     | MHz        |                                      |
| Quantum Efficiency<br>(1300-1550 nm)                               | 75     |      |      | 75     |      |      |          |     |     | %          |                                      |
| Maximum Useable Gain (M)                                           | 10     | 20   |      | 10     | 20   |      |          |     |     | No units   |                                      |

- 1. A specific voltage,  $V_{op}$ , is supplied with each device. When the photodiode is operated at this voltage (at 22 °C), the device will meet the electrical characteristic limits shown above. The voltage value will be within the range of 40 to 95 volts.
- 2. The voltage dependence of the gain, M, for gains above 4, is given approximately by the following empirical formula yielding a rough approximation of the sensitivity:  $M = 50/(V_{BR}-V_{op})$ .
- 3. Gain and quantum efficiency are not directly measurable quantities. The numbers quoted are estimated typical values. Gain, quantum efficiency and responsivity are related by the following:  $R = \eta \lambda M / 1.24$  where  $\lambda$  is the wavelength in units of mm,  $\eta$  is the quantum efficiency, M is gain.
- 4. The detector noise current / rt(Hz) is given by the following expression:  $I_n = (2q (I_s + I_b M^2 F))^{1/2}$

Where:  $F = k_{eff}M + (1 - k_{eff}) (2-1/M)$  and  $l_s$  and  $l_b$  are the un-multiplied and multiplied portions of the dark current, respectively. The total dark current is given by:  $l_t = l_s + l_b M$ .

However, since both  $I_s$  and  $I_b$  are somewhat voltage dependent, and M is not directly measurable (see Note 3), it is not usually possible to determine both  $I_s$  and  $I_b$  unambiguously. Since system performance depends on noise current and responsivity, these measurable quantities are the ones that have been specified.

- 5. Most devices can be operated at gains up to about 30 or more, but with values of noise current correspondingly higher, as indicated by the discussion in Note 4 above.
- 6. The product C30662EH can be ordered with specified operation voltage bias from the voltage breakdown ( $V_{BR}$ - $V_{op}$ ), also known as deltaV or dV. Using the "-1" suffix specifies a dV larger than 4 V. Please contact us for more information.

**Table 2: Absolute Maximum Rating, Limiting Values** 

|                                    | Parameter   | Units |
|------------------------------------|-------------|-------|
| Forward Current                    | 5           | mA    |
| Total Power dissipation            | 20          | mW    |
| Operating Temperature              | -60 to +125 | °C    |
| Storage Temperature                | -20 to +70  | °C    |
| Soldering Temperature (10 seconds) | 250         | °C    |

# **Table 3: Ordering Guide**

| Model         | Package Type                         |
|---------------|--------------------------------------|
| C30645EH      | Standard TO-18                       |
| C30645CCERH   | Ceramic Carrier                      |
| C30662EH      | Standard TO-18                       |
| C30662EH-1    | Standard TO-18, dV larger than 4.0V  |
| C30662ECERH   | Ceramic Carrier                      |
| C30662ECERH-1 | Ceramic Carrier, dV larger than 4.0V |

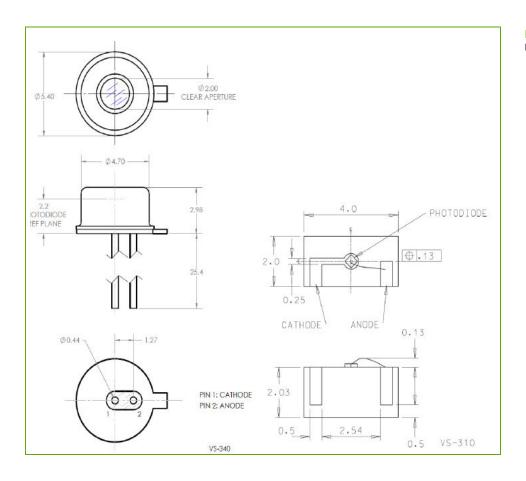



Figure 1
Mechanical Characteristics

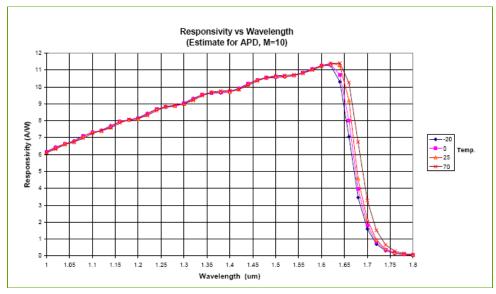



Figure 2
Spectral Responsivity Curve



Figure 3
Typical Gain vs. Bias

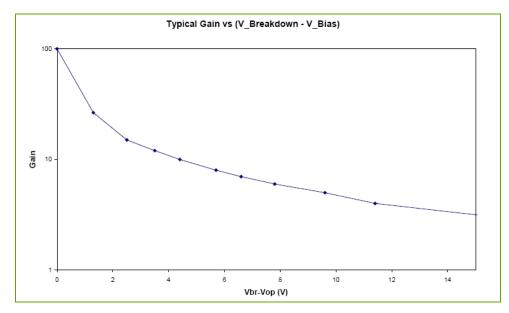



Figure 4
Typical Gain vs.dV
(V breakdown - V bias)

Excelitas Technologies 22001 Dumberry Road Vaudreuil-Dorion, Quebec Canada JTV 8P7 Telephone: (+1) 450.424.3300 Toll-free: (+1) 800.775.6786 Fax: (+1) 450.424.3345 Excelitas Technologies GmbH & Co. KG Wenzel-Jaksch-Str. 31 D-65199 Wiesbaden Germany Telephone: (+49) 611 492 430 Fax: (+49) 611 492 165

Excelitas Technologies 47 Ayer Rajah Crescent #06-12 Singapore 139947 Telephone: (+65) 6775 2022 Fax: (+65) 6775 1008



For a complete listing of our global offices, visit www.excelitas.com/Detection

©2011 Excelitas Technologies All rights reserved. The Excelitas logo and design are registered trademarks of Excelitas Technologies Corp. All other trademarks not owned by Excelitas Technologies or its subsidiaries that are depicted herein are the property of their respective owners. Excelitas reserves the right to change this document at any time without notice and disclaims liability for editorial, pictorial or typographical errors. 600013\_01 DTS 0411-803P